第十章物质代谢总课时10食品生物技术专业12精.docx

上传人:b****5 文档编号:28244586 上传时间:2023-07-09 格式:DOCX 页数:25 大小:233.08KB
下载 相关 举报
第十章物质代谢总课时10食品生物技术专业12精.docx_第1页
第1页 / 共25页
第十章物质代谢总课时10食品生物技术专业12精.docx_第2页
第2页 / 共25页
第十章物质代谢总课时10食品生物技术专业12精.docx_第3页
第3页 / 共25页
第十章物质代谢总课时10食品生物技术专业12精.docx_第4页
第4页 / 共25页
第十章物质代谢总课时10食品生物技术专业12精.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

第十章物质代谢总课时10食品生物技术专业12精.docx

《第十章物质代谢总课时10食品生物技术专业12精.docx》由会员分享,可在线阅读,更多相关《第十章物质代谢总课时10食品生物技术专业12精.docx(25页珍藏版)》请在冰豆网上搜索。

第十章物质代谢总课时10食品生物技术专业12精.docx

第十章物质代谢总课时10食品生物技术专业12精

教案

第十章物质代谢(总课时10,食品生物技术专业12)

[教学目的与要求]使学生了解细胞中能量代谢与物质代谢的关系,掌握主要营养物质的代谢途径及主要特点。

[重点]生物氧化的概念,糖、脂、蛋白质分解代谢。

[难点]糖、脂、蛋白质分解代谢。

第一节代谢概述(1学时)

[教学目的与要求]使学生了解生物氧化与新陈代谢的基本知识。

[重点]生物氧化的概念,糖、脂、蛋白质的消化吸收。

[难点]生物氧化的概念。

[教学方法与手段]

讨论案例教学启发讲解

[教学过程设计]

提问:

1.生物体与非生物体的区别特征是什么?

2.为什么说“人是铁饭是钢?

引出:

新陈代谢

一、新陈代谢的概念

1.概述

新陈代谢:

生物体与外界环境不断交换物质的过程,包括从体外吸收养料和在组织中的变化及向体外排泄废物。

狭义的新陈代谢:

物质在细胞内发生的合成和分解过程,又称为中间代谢。

食品中营养成分的代谢:

糖类、蛋白质和脂类等在生物体内的分解与合成。

研究生物代谢的目的:

了解食物成分在人体内营养过程中的变化;了解食品质量在工业加工过程中的变化。

食物中蕴藏的化学潜能通过氧化作用释放出来供机体维持各种复杂的生命运动。

糖类、脂肪和蛋白质是机体内能量的主要来源,故将它们称为三大能源物质。

这几类有机物在生物体细胞内进行的氧化分解,称为生物氧化。

1)生物氧化的特点(重点)

(1)生物氧化是在生物细胞内进行的酶促氧化过程,反应条件温和(水溶液,中性pH和常温)。

(2)生物氧化由一系列连续的化学反应逐步完成,伴随着能量的逐步释放。

(3)生物氧化释放的能量,通过与ATP合成相偶联,转换成生物体能够直接利用的能源物质ATP。

2)生物氧化的方式(重点)

(1)加氧反应

O2

苯丙氨酸——→酪氨酸

(2)脱氢反应

2.生物氧化过程中二氧化碳和水的生成

1)CO2的生成

代谢中间产物如草酰乙酸、苹果酸、丙酮酸等脱羧产生

(1)直接脱羧脱羧酶催化

OO

‖а-酮酸脱羧酶‖

CH3─C─COOH——────→CH3─C+CO2

TPP|

H

脱羧酶

R-CH(NH2)COOH─→R-CH2NH2+CO2

(2)氧化脱羧脱羧同时伴有脱氢

苹果酸酶

COOH-CHOH-CH2-COOH+NADP+─→HOOC-CO-CH3+CO2+NADPH+H+

丙酮酸

2)水的生成(难点)

(1)基本原理及呼吸链的概念

水是代谢分子中的氢与细胞吸入的氧结合而成的,它分为两部分:

脱氢酶将底物上的氢激活脱落;氧化酶将来自大气的分子态氧活化成为氢的最终受体而生成水。

氧化酶处于氢的氧化过程的末端,故称末端氧化酶。

在脱氢酶与末端氧化酶之间充当氢原子传递媒介的传递体称为呼吸传递体,又称电子传递体。

由脱氢酶、呼吸传递体、末端氧化酶组成的生物氧化酶体系称为呼吸链。

(2)呼吸链的组成

呼吸链由脱氢酶、呼吸传递体、末端氧化酶三个环节构成,参与呼吸链的酶都是氧化还原酶,主要存在于线粒体中,可将它们分为五大类。

二、物质的消化、吸收和排泄

糖的消化吸收:

口腔中唾液淀粉酶可对淀粉进行初步消化,消化吸收的主要部位为小肠。

脂类的消化、吸收:

消化及吸收部位:

小肠

分泌脂肪酶:

胰脏

乳化作用:

胆囊分泌胆汁

蛋白质的消化、吸收:

消化及吸收部位:

小肠

分泌蛋白酶原:

胰脏

第二节糖的代谢(4课时)

[教学目标与要求]使学生了解糖代谢的基本知识。

[重点]糖的分解代谢。

[难点]物质代谢与能量代谢的关系。

[教学方法与手段]

讨论案例教学启发讲解

[教学过程设计]

提问:

1糖是怎么分类的?

2常见食物中主要含有什么糖?

引出:

食物中的糖怎么被利用?

一、糖的分解代谢(重点)

多糖和寡聚糖的酶促降解

多糖和寡聚糖只有分解成小分子后才能被吸收利用,生产中常称为糖化。

淀粉水解

淀粉→糊精→寡糖→麦芽糖→G

淀粉的酶促水解:

水解淀粉的淀粉酶有α与β淀粉酶,二者只能水解淀粉中的α-1,4糖苷键,水解产物为麦芽糖。

α-淀粉酶可以水解淀粉(或糖原)中任何部位的α-1,4糖苷键,β淀粉酶只能从非还原端开始水解。

水解淀粉中的α-1,6糖苷键的酶是α-1,6糖苷键酶,淀粉水解的产物为糊精和麦芽糖的混合物。

1)酵解途径(EMP途径)——糖的无氧分解(难点)

(1)EMP途径的生化历程

A)第一阶段:

葡萄糖1,6-二磷酸果糖

B)第二阶段:

1,6-二磷酸果糖3-磷酸甘油醛

C)第三阶段:

3-磷酸甘油醛2-磷酸甘油酸

D)第四阶段:

2-二磷酸甘油酸丙酮酸

(2)丙酮酸的无氧降解(酵解与厌氧发酵)

(A)乳酸发酵(同型乳酸发酵)

动物

乳酸菌(乳杆菌、乳链球菌)

G+2ADP+2Pi—→2乳酸+2ATP+2H2O

(B)酒精发酵(酵母的第Ⅰ型发酵)

(C)甘油发酵(酵母的第Ⅱ型发酵)

2)糖的有氧分解(重点)

有氧氧化:

大多数生物的主要代谢途径,可衍生许多其他物质。

A.丙酮酸氧化脱羧—乙酰CoA的生成

基本反应:

糖酵解生成的丙酮酸可穿过线粒体膜进入线粒体内室。

在丙酮酸脱氢酶系的催化下,生成乙酰辅酶A。

催化酶:

这一多酶复合体位于线粒体内膜上,原核细胞则在胞液中。

B.乙酰CoA的彻底氧化分解

三羧酸循环过程总结(一次循环)

10步反应

8种酶催化

反应类型

缩合1、脱水1、氧化4、底物水平磷酸化1、水化1

生成3分子还原型CoⅠ

生成1分子FADH2

生成1分子ATP

三羧酸循环总反应式

三羧酸循环的生物学意义:

①普遍存在;②生物体获得能量的最有效方式;③是糖类、蛋白质、脂肪三大物质转化的枢纽;④获得微生物发酵产品的途径:

柠檬酸、谷氨酸。

葡萄糖在分解代谢过程中产生的能量有两种形式:

直接产生ATP;生成高能分子NADH+H+或FADH2,后者在线粒体呼吸链氧化并产生ATP。

(1)糖酵解:

1分子葡萄糖2分子丙酮酸,共消耗了2个ATP,产生了4个ATP,实际上净生成了2个ATP,同时产生2个NADH+H+。

(2)有氧分解(丙酮酸生成乙酰CoA及三羧酸循环)产生的ATP、NADH+H+和FADH2

丙酮酸氧化脱羧:

丙酮酸乙酰CoA,生成1个NADH+H+。

三羧酸循环:

乙酰CoACO2和H2O,产生一个GTP(即ATP)、3个NADH+H+和1个FADH2。

葡萄糖分解代谢过程中产生的总能量

糖酵解、丙酮酸氧化脱羧及三羧酸循环生成的NADH+H+和FADH2,进入线粒体呼吸链氧化并生成ATP。

线粒体呼吸链是葡萄糖分解代谢产生ATP的最主要途径。

葡萄糖分解代谢总反应式

C6H6O6+6H2O+10NAD++2FAD+4ADP+4Pi6CO2+10NADH+10H++2FADH2+4ATP

按照一个NADH能够产生3个ATP,1个FADH2能够产生2个ATP计算,1分子葡萄糖在分解代谢过程中共产生38个ATP:

4ATP+(103)ATP+(22)ATP=38ATP

C.丙酮酸羧化支路(回补途径)

三羧酸循环不仅是产生ATP的途径,它产生的中间产物也是生物合成的前体。

例如卟啉的主要碳原子来自琥珀酰CoA,谷氨酸、天冬氨酸是从α-酮戊二酸、草酰乙酸衍生而成。

TCA的中间产物随时都有被移作他用的可能,一旦草酰乙酸浓度下降,势必影响三羧酸循环的进行。

要保证整个循环正常进行,必须补充移作他用的中间产物,这类反应称为TCA的回补反应。

由丙酮酸羧化为苹果酸、草酰乙酸,由磷酸烯醇式丙酮酸羧化为草酰乙酸为重要的回补途经,称丙酮酸羧化支路

由丙酮酸羧化为苹果酸、草酰乙酸,

由磷酸烯醇式丙酮酸羧化为草酰乙酸。

3)磷酸戊糖途径(HMS途径)

糖酵解和三羧酸循环是机体内糖分解代谢的主要径,但不是唯一途径。

实验研究也表明:

在组织中添加酵解抑制剂如碘乙酸或氟化物等,葡萄糖仍可以被消耗,这说明葡萄糖还有其它的代谢途径。

许多组织细胞中都存在有另一种葡萄糖降解途径,即磷酸戊糖途径,也称为磷酸己糖旁路。

参与磷酸戊糖途径的酶类都分布在动物细胞浆中,动物体中约有30%的葡萄糖通过此途径分解。

A.磷酸戊糖途径的反应过程

①G-6-P脱氢脱羧转化成5-磷酸核酮糖

②磷酸戊糖的异构化

③磷酸戊糖通过转酮及转醛反应生成酵解途径的中间产物6-磷酸果糖和3-磷酸甘油醛

B.磷酸戊糖途径的调节

肝脏中的各种戊糖途径的酶中以6-磷酸葡萄糖脱氢酶的活性最低,所以它是戊糖途径的限速酶,催化不可逆反应步骤。

其活性受NADP+/NADPH比值的调节,NADPH竞争性抑制6-磷酸葡萄糖脱氢酶和6-磷酸葡萄糖酸脱氢酶的活性。

机体内NAD+/NADH比NADP+/NADPH的比值要高几个数量级,前者为700,后者为0.014,这使NADHP可以进行有效的反馈抑制调控。

只有NADPH在脂肪的生物合成中被消耗时才能解除抑制,再通过6-磷酸葡萄糖脱氢酶产生出NADPH。

非氧化阶段戊糖的转变主要受控于底物浓度。

5-磷酸核糖过多时,可转化成6-磷酸果糖和3-磷酸甘油醇进行酵解。

二、糖的合成代谢

1)糖异生作用

(1)糖异生的证据及其生理意义:

糖异生是指从非糖物质合成葡萄糖的过程。

非糖物质包括丙酮酸、乳酸、生糖氨基酸、甘油等均可以在哺乳动物的肝脏中转变为葡萄糖或糖原。

这一过程基本上是糖酵解途径的逆过程,但具体过程并不是完全相同,因为在酵解过程中有三步是不可逆的反应,而在糖异生中要通过其它的旁路途径来绕过这三步不可逆反应,完成糖的异生过程。

A.糖异生的证据如下:

用整体动物做实验,禁食24小时,大鼠肝脏中的糖原由7%降低到1%,饲喂乳酸、丙酮酸或三羧酸循环代谢的中间物后可以使大鼠肝糖原增加。

根皮苷是一种从梨树茎皮中提取的有毒的糖苷,它能抑制肾小管将葡萄糖重吸收进入血液中,这样血液中的葡萄糖就不断的由尿中排出。

当给用根皮苷处理过的动物饲喂三羧酸循环中间代谢物或生糖氨基酸后,这些动物尿中的糖含量增加。

糖尿病人或切除胰岛的动物,他们从氨基酸转化成糖的过程十分活跃。

当摄入生糖氨基酸时,尿中糖含量增加。

B、糖异生的生理意义

糖异生作用是一个十分重要的生物合成葡萄糖的途径。

红细胞和脑是以葡萄糖为主要燃料的,成人每天约需要160克葡萄糖,其中120克用于脑代谢,而糖原的贮存量是很有限的,所以需要糖异生来补充糖的不足。

在饥饿或剧烈运动造成糖原下降后,糖异生能使酵解产生的乳酸、脂肪分解产生的甘油以及生糖氨基酸等中间产物重新生成糖。

这对维持血糖浓度,满足组织对糖的需要是十分重要的。

糖异生可以促进脂肪氧化分解供应能量,当体内糖供应不足时,机体会大量动员脂肪分解,此时会产生过多的酮体(乙酰乙酸、β-羟丁酸、丙酮),而酮体则必须经过三羧酸循环才能彻底氧化,此时糖异生对维持三羧酸循环的正常进行起主要作用。

(2)糖异生的途径

糖异生作用的总反应式如下:

2丙酮酸+4ATP+2GTP+2NADH+2H++4H2O→葡萄糖+2NAD++4ADP+2GDP+6Pi

A、丙酮酸羧化生成磷酸烯醇式丙酮酸

丙酮酸+ATP+GTP→磷酸烯醇式丙酮酸+ADP+GDP+CO2

B、磷酸烯醇式丙酮酸沿酵解途径逆向反应生成1,6-二磷酸果糖。

这个过程也要逾越一个能障,即从3-磷酸甘油酸转变成1,3-二磷酸甘油酸的过程中需要消耗一个ATP。

C、1,6-二磷酸果糖转化成6-磷酸果糖。

这是糖异生作用中的关键反应,由果糖二磷酸酶催化。

该酶是一个别构酶,被其负效应物AMP、2,6-二磷酸果糖强烈抑制,但ATP、柠檬酸和3-磷酸甘油酸可激活此酶的活性。

D、6-磷酸果糖转化为葡萄糖,由葡萄糖-6-磷酸酶催化。

该酶只在肝脏中存在,在肌肉或脑组织中没有此酶存在,因此糖异生作用只能在肝脏中进行。

2)糖原的合成

糖原是动物体内的多糖,由葡萄糖聚合而成,其结构类似于支链淀粉。

一般有肝糖原、肌糖原两种。

代谢过程中体内多余的葡萄糖可以糖原的形式贮存起来。

在机体需要时,糖原可分解产生能量。

[课外作业]

1.对糖类分解代谢加深理解。

2.弄清EMP、TCA途径物质与能量变化。

第三节脂类代谢(2课时,食品生物技术专业3课时)

[教学目的与要求]

1.理解脂肪水解及甘油代谢

2.了解脂肪酸氧化过程

[教学重点]

1脂肪分解代谢

2脂肪酸β-氧化

[教学难点]脂肪酸β-氧化

[教学方法与手段]启发讲解提问查阅资料

[教学过程设计]

提问:

1脂类能量效价高吗?

2脂类食物是怎么供能的?

引出:

食物中脂的代谢

一、脂肪的分解代谢

1)脂肪的水解

2)甘油的分解

3)脂肪酸的氧化分解(β-氧化)(重点)

脂肪酸的活化——脂酰CoA的生成

长链脂肪酸氧化前必须进行活化,活化在线粒体外进行。

内质网和线粒体外膜上的脂酰CoA合成酶在ATP、CoASH、Mg2+存在条件下,催化脂肪酸活化,生成脂酰CoA。

穿膜(脂酰CoA进入线粒体)

脂肪酸活化在细胞液中进行,而催化脂肪酸氧化的酶系是在线粒体基质内,因此活化的脂酰CoA必须进入线粒体内才能代谢。

脂肪酸的β氧化

长链脂酰CoA的β氧化是在线粒体脂肪酸氧化酶系作用下进行的,每次氧化断去二碳单位的乙酰CoA,再经TCA循环完全氧化成二氧化碳和水,并释放大量能量。

偶数碳原子的脂肪酸β氧化最终全部生成乙酰CoA。

脂酰CoA的β氧化反应过程如下:

①脱氢脂酰CoA经脂酰CoA脱氢酶催化,在其α和β碳原子上脱氢,生成△2反烯脂酰CoA,该脱氢反应的辅基为FAD。

 

②加水(水合反应)△2反烯脂酰CoA在△2反烯脂酰CoA水合酶催化下,在双键上加水生成L-β-羟脂酰CoA。

 

③脱氢L-β-羟脂酰CoA在L-β-羟脂酰CoA脱氢酶催化下,脱去β碳原子与羟基上的氢原子生成β-酮脂酰CoA,该反应的辅酶为NAD+。

 

④硫解在β-酮脂酰CoA硫解酶催化下,β-酮脂酰CoA与CoA作用,硫解产生1分子乙酰CoA和比原来少两个碳原子的脂酰CoA。

总结:

脂肪酸β氧化最终的产物为乙酰CoA、NADH+H+和FADH2。

假如碳原子数为Cn的脂肪酸进行β氧化,则需要作(n/2-1)次循环才能完全分解为n/2个乙酰CoA,产生n/2个NADH+H+和n/2个FADH2;生成的乙酰CoA通过TCA循环彻底氧化成二氧化碳和水并释放能量,而NADH+H+和FADH2则通过呼吸链传递电子生成ATP。

至此可以生成的ATP数量为:

(n÷2﹣1)×(2+3)+n÷2×12﹣2

以软脂酸(18C)为例计算其完全氧化所生成的ATP分子数:

(16÷2﹣1)×(2+3)+16÷2×12﹣2=129

二、脂肪的生物合成(1学时,食品生物技术专业专用)

(一)脂肪酸的生物合成

生物机体内脂类的合成是十分活跃的,特别是在高等动物的肝脏、脂肪组织和乳腺中占优势。

脂肪酸合成的碳源主要来自糖酵解产生的乙酰CoA。

脂肪酸合成步骤与氧化降解步骤完全不同。

脂肪酸的生物合成是在细胞液中进行,需要CO2和柠檬酸参加;而氧化降解是在线粒体中进行的。

合成过程可以分为三个阶段:

(1)原料的准备——乙酰CoA羧化生成丙二酸单酰CoA(在细胞液中进行),由乙酰CoA羧化酶催化,辅基为生物素,是一个不可逆反应。

乙酰CoA羧化酶可分成三个不同的亚基:

生物素羧化酶(BC)

生物素羧基载体蛋白(BCCP)

羧基转移酶(CT)

乙酰CoA的穿膜转运:

柠檬酸穿梭系统

肉毒碱转运

(2)合成阶段———以软脂酸(16碳)的合成为例(在细胞液中进行)。

催化该合成反应的是一个多酶体系,共有七种蛋白质参与反应,以没有酶活性的脂酰基载体蛋白(ACP)为中心,组成一簇。

原初反应(初始反应)、原初反应、缩合反应、还原反应、脱水反应、还原反应。

至此,生成的丁酰-ACP比开始的乙酰-ACP多了两个碳原子;然后丁酰基再从ACP上转移到β-酮脂酰合成酶的-SH上,再重复以上的缩合、还原、脱水、还原4步反应,每次重复增加两个碳原子,释放一分子CO2,消耗两分子NADPH,经过7次重复后合成软脂酰-ACP,最后经硫脂酶催化脱去ACP生成软脂酸(16碳)。

(3)延长阶段(在线粒体和微粒体中进行)生物体内有两种不同的酶系可以催化碳链的延长,一是线粒体中的延长酶系,另一个是粗糙内质网中的延长酶系。

线粒体脂肪酸延长酶系

以乙酰CoA为C2供体,不需要酰基载体,由软脂酰CoA与乙酰CoA直接缩合。

内质网脂肪酸延长酶系

用丙二酸单酰CoA作为C2的供体,NADPH作为H的供体,中间过程和脂肪酸合成酶系的催化过程相同。

(二)不饱和脂肪酸的合成

不饱和脂肪酸中的不饱和键由去饱和酶催化形成。

人体内含有的不饱和脂肪酸主要有棕榈油酸(16C,一个不饱和键)、油酸(18C,一个不饱和键)、亚油酸(18C,两个不饱和键)、亚麻酸(18C,三个不饱和键)以及花生四烯酸(20C,四个不饱和键)等,前两种单不饱和脂肪酸可由人体自己合成,后三种为多不饱和脂肪酸,必须从食物中摄取,因为哺乳动物体内没有△9以上的去饱和酶。

[课外作业]

1.什么是脂肪酸的β-氧化?

2.甘油怎样进入糖代谢途径?

第四节蛋白质降解及氨基酸代谢(2学时)

[教学目的与要求]

1.理解蛋白质的分解代谢;2.弄清氨基酸代谢途径。

[教学重点]

1氨基酸的一般代谢;2代谢同产物的去路。

[教学难点]

氨基酸的一般代谢。

[教学方法与手段]

启发讲解提问查阅资料

[教学过程设计]

提问:

1蛋白质的基本组成单位是什么?

2什么是必需氨基酸?

引出:

蛋白质降解及氨基酸代谢

一、蛋白质的酶促水解(消化吸收)

(1)水解:

(酸、碱、酶)

水解过程:

protein—→眎—→胨—→肽—→AA

(2)酶促降解

动物消化道酶

植物果实酶

微生物大多数正分解

有的细菌

真菌—→酶制剂

放线菌

微生物来源蛋白酶制剂常按最适pH分类

碱性:

pH10以上(2709枯草菌蛋白酶)

酸性:

pH2-3以下黑曲霉

中性:

蛋白酶分类:

内肽酶(蛋白酶)

外肽酶羧肽酶、氨肽酶

二、氨基酸分解的共同途径(重点)

1)脱氨基作用

(1)氧化脱氨基作用

氨基酸脱氢酶(不需氧)

氨基酸氧化酶(需氧)

(2)非氧化脱氨基

脱水

脱H2S

2)转氨基作用

3)联合脱氨基作用

4)脱羧基作用

5)AA降解产物的进一步代谢

CO2:

放出、再羧化

R-CO-COOH:

EMP(生糖、生酮)、TCA(生ATP)。

NH2:

a.再合成AA

b.合成酰胺

c.生成氨甲酰磷酸

d.生成尿素排泄(鸟氨酸(尿素)循环)

三、氨基酸的合成

1)概述

-NH2

氨基化

酮酸(碳架)

2)氨基化

(1)还原氨基化

(2)转氨基

(3)联合氨基化

3)个别氨基酸合成

根据碳架来源分族

Glu族

Asp族

Ala族(pyr)

Ser族(甘油3磷酸)

芳香族(PPP途径)

His(PRPP)

[课外作业]

1.为什么称蛋白质为三大能源物质之一?

2.氨基酸的一般代谢途径有哪些?

 

第五节核酸的降解和核苷酸代谢(1学时,食品生物技术业专用)

[教学目的与要求]

1.理解核酸的降解。

2.了解核苷酸代谢。

[教学重点]核酸的降解;核苷酸分解代谢。

[教学难点]核苷酸分解代谢。

[教学方法与手段]启发讲解提问查阅资料

[教学过程设计]

提问:

1核酸分几类?

2核酸的作用?

引出:

核酸的降解和核苷酸代谢

一、核酸的酶促降解(重点)

1)核酸水解:

DNA稳定,耐酸碱

RNA易水解:

碱中水解

2)酶促水解:

RNA:

RNase(酶稳定、耐高温)

DNA:

DNase(种类多、工具酶)

作用类别:

核酸内切酶磷酸二酯酶

核酸外切酶磷酸单酯酶

非特异性

特异性

3)限制性核酸内切酶

具有识别双链DNA分子中特定核苷酸序列,并由此切割DNA双链的核酸内切酶统称为限制性核酸内切酶

二、核苷酸的分解代谢(难点)

1)嘌呤碱的分解

2)嘧啶碱的分解

三、核苷酸的生物合成

1)嘌呤核苷酸的合成

2)嘧啶核苷酸的合成

[课外作业]

1.查资料了解核酸的结构与生理作用。

2.加深理解核苷酸的分解代谢。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1