汽车理论matlab作业.docx

上传人:b****8 文档编号:28223804 上传时间:2023-07-09 格式:DOCX 页数:47 大小:327.67KB
下载 相关 举报
汽车理论matlab作业.docx_第1页
第1页 / 共47页
汽车理论matlab作业.docx_第2页
第2页 / 共47页
汽车理论matlab作业.docx_第3页
第3页 / 共47页
汽车理论matlab作业.docx_第4页
第4页 / 共47页
汽车理论matlab作业.docx_第5页
第5页 / 共47页
点击查看更多>>
下载资源
资源描述

汽车理论matlab作业.docx

《汽车理论matlab作业.docx》由会员分享,可在线阅读,更多相关《汽车理论matlab作业.docx(47页珍藏版)》请在冰豆网上搜索。

汽车理论matlab作业.docx

汽车理论matlab作业

一、确定一轻型货车的动力性能。

1)绘制汽车驱动力与行驶阻力平衡图;

2)求汽车最高车速与最大爬坡度;

3)绘制汽车行驶加速度倒数曲线;用计算机求汽车用Ⅱ档起步加速行驶至70km/h所需

的加速时间。

已知数据略。

(参见《汽车理论》习题第一章第3题)

解题程序如下:

用Matlab语言

(1)绘制汽车驱动力与行驶阻力平衡图

m1=2000;m2=1800;mz=3880;

g=;r=;CdA=;f=;nT=;

ig=[];i0=;

If=;Iw1=;Iw2=;

Iw=2*Iw1+4*Iw2;

fori=1:

69

n(i)=(i+11)*50;

Ttq(i)=+*(n(i)/1000)*(n(i)/1000)^2+*(n(i)/1000)^*(n(i)/1000)^4;

end

forj=1:

5

fori=1:

69

Ft(i,j)=Ttq(i)*ig(j)*i0*nT/r;

ua(i,j)=*r*n(i)/(ig(j)*i0);

Fz(i,j)=CdA*ua(i,j)^2/+mz*g*f;

end

end

plot(ua,Ft,ua,Ff,ua,Ff+Fw)

title('汽车驱动力与行驶阻力平衡图');

xlabel('ua(km/h)');

ylabel('Ft(N)');

gtext('Ft1')

gtext('Ft2')

gtext('Ft3')

gtext('Ft4')

gtext('Ft5')

gtext('Ff+Fw')

(2)求最大速度和最大爬坡度

fork=1:

175

n1(k)=3300+k*;

Ttq(k)=+*(n1(k)/1000)*(n1(k)/1000)^2

+*(n1(k)/1000)^*(n1(k)/1000)^4;

Ft(k)=Ttq(k)*ig(5)*i0*nT/r;

ua(k)=*r*n1(k)/(ig(5)*i0);

Fz(k)=CdA*ua(k)^2/+mz*g*f;

E(k)=abs((Ft(k)-Fz(k)));

end

fork=1:

175

if(E(k)==min(E))

disp('汽车最高车速=');

disp(ua(k));

disp('km/h');

end

end

forp=1:

150

n2(p)=2000+p*;

Ttq(p)=+*(n2(p)/1000)*(n2(p)/1000)^2+*(n2(p)/1000)

^*(n2(p)/1000)^4;

Ft(p)=Ttq(p)*ig

(1)*i0*nT/r;

ua(p)=*r*n2(p)/(ig

(1)*i0);

Fz(p)=CdA*ua(p)^2/+mz*g*f;

af(p)=asin((Ft(p)-Fz(p))/(mz*g));

end

forp=1:

150

if(af(p)==max(af))

i=tan(af(p));

disp('汽车最大爬坡度=');

disp(i);

end

end

汽车最高车速=h

汽车最大爬坡度=

(3)计算2档起步加速到70km/h所需时间

fori=1:

69

n(i)=(i+11)*50;

Ttq(i)=+*(n(i)/1000)*(n(i)/1000)^2+*(n(i)/1000)^*(n(i)/1000)^4;

end

forj=1:

5

fori=1:

69

deta=1+Iw/(mz*r^2)+If*ig(j)^2*i0^2*nT/(mz*r^2);

ua(i,j)=*r*n(i)/(ig(j)*i0);

a(i,j)=(Ttq(i)*ig(j)*i0*nT/r-CdA*ua(i,j)^2/

-mz*g*f)/(deta*mz);

if(a(i,j)<=0)

a(i,j)=a(i-1,j);

end

if(a(i,j)>

b1(i,j)=a(i,j);

u1(i,j)=ua(i,j);

else

b1(i,j)=a(i-1,j);

u1(i,j)=ua(i-1,j);

end

b(i,j)=1/b1(i,j);

end

end

x1=u1(:

1);y1=b(:

1);

x2=u1(:

2);y2=b(:

2);

x3=u1(:

3);y3=b(:

3);

x4=u1(:

4);y4=b(:

4);

x5=u1(:

5);y5=b(:

5);

plot(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5);

title('加速度倒数时间曲线');

axis([0120030]);

xlabel('ua(km/h)');

ylabel('1/aj');

gtext('1/a1')

gtext('1/a2')

gtext('1/a3')

gtext('1/a4')

gtext('1/a5')

fori=1:

69

A=ua(i,3)-ua(69,2);

if(A<1&A>0)

j=i;

end

B=ua(i,4)-ua(69,3);

if(B<2&B>0)

k=i;

end

if(ua(i,4)<=70)

m=i;

end

end

t=ua(1,2)*b(1,2);

forp1=2:

69

t1(p1)=(ua(p1,2)-ua(p1-1,2))*(b(p1,2)+b(p1-1,2))*;

t=t+t1(p1);

end

forp2=j:

69

t2(p2)=(ua(p2,3)-ua(p2-1,3))*(b(p2,3)+b(p2-1,3))*;

t=t+t2(p2);

end

forp3=k:

m

t3(p3)=(ua(p3,4)-ua(p3-1,4))*(b(p3,4)+b(p3-1,4))*;

t=t+t3(p3);

end

t=t+(ua(j,3)-ua(69,2))*b(69,2)+(ua(k,4)-ua(69,3))*b(69,3)

+(70-ua(m,4))*b(m,4);

tz=t/;

disp('加速时间=');

disp(tz);

disp('s');

加速时间=

二、计算与绘制题1中货车的1)汽车功率平衡图;

2)最高档与次高档的等速百公里油耗曲线。

已知数据略。

(参见《汽车理论》习题第二章第7题)

解题程序如下:

用Matlab语言

m1=2000;m2=1800;mz=3880;g=;

r=;CdA=;f=;nT=;

ig=[];

i0=;If=;Iw1=;Iw2=;

n1=[8151207161420122603300634033804];

Iw=2*Iw1+4*Iw2;

nd=400;Qid=;

forj=1:

5

fori=1:

69

n(i)=(i+11)*50;

Ttq(i)=+*(n(i)/1000)*(n(i)/1000)^2+*(n(i)/1000)^*(n(i)/1000)^4;

Pe(i)=n(i)*Ttq(i)/9549;

ua(i,j)=*r*n(i)/(ig(j)*i0);

Pz(i,j)=(mz*g*f*ua(i,j)/3600.+CdA*ua(i,j)^3/76140.)/nT;

end

end

plot(ua,Pe,ua,Pz);

title('汽车功率平衡图)');

xlabel('ua(km/h)');

ylabel('Pe,Pz(kw)');

gtext('I')

gtext('II')

gtext('III')

gtext('IV')

gtext('V')

gtext('P阻')

forj=1:

5

fori=1:

8

Td(i)=+*(n1(i)/*(n1(i)/^2+*(n1(i)/10

^*(n1(i)/^4;

Pd(i)=n1(i)*Td(i)/9549;

u(i,j)=*n1(i)*r/(ig(j)*i0);

end

end

b

(1)=*Pd

(1)^*Pd

(1)^3+*Pd

(1)^*Pd

(1)+;

b

(2)=*Pd

(2)^*Pd

(2)^3+*Pd

(2)^*Pd

(2)+;

b(3)=*Pd(3)^*Pd(3)^3+*Pd(3)^*Pd(3)+;

b(4)=*Pd(4)^*Pd(4)^3+*Pd(4)^*Pd(4)+;

b(5)=*Pd(5)^*Pd(5)^3+*Pd(5)^*Pd(5)+;

b(6)=*Pd(6)^*Pd(6)^3+*Pd(6)^*Pd(6)+;

b(7)=*Pd(7)^*Pd(7)^3+*Pd(7)^*Pd(7)+;

b(8)=*Pd(8)^*Pd(8)^3+*Pd(8)^*Pd(8)

+;

u1=u(:

1)';

u2=u(:

2)';

u3=u(:

3)';

u4=u(:

4)';

u5=u(:

5)';

B1=polyfit(u1,b,3);

B2=polyfit(u2,b,3);

B3=polyfit(u3,b,3);

B4=polyfit(u4,b,3);

B5=polyfit(u5,b,3);

forq=1:

69

bh(q,1)=polyval(B1,ua(q,1));

bh(q,2)=polyval(B2,ua(q,2));

bh(q,3)=polyval(B3,ua(q,3));

bh(q,4)=polyval(B4,ua(q,4));

bh(q,5)=polyval(B5,ua(q,5));

end

fori=1:

5

forq=1:

69

Q(q,i)=Pz(q,i)*bh(q,i)/*ua(q,i)*;

end

end

plot(ua(:

4),Q(:

4),ua(:

5),Q(:

5));

title('四档五档等速百公里油耗图');

xlabel('ua(km/h)');

ylabel('Qs(L/100km)');

三、改变题中轻型货车的主减速器传动比,做出

为、、、、时的燃油经济性—加速时间曲线,讨论不同

值对汽车性能的影响。

Matlab程序:

m1=2000;

m2=1800;

m=3880;

r0=;

gt=;       

f=;         

CDA=;   

i0=;       

If=;

Iw1=;

Iw2=;

Ig5=[];

Ig0=[];

 

B=[;

;

;

;

;

;

;

;];

n=[8151207161420122603300634033804];

fori=1:

5

fork=1:

8

ua(i,k)=**n(k)/(Ig0(i)*Ig5(5));

Ttq(i)=+.*(n(i)/1000).*(n(i)/1000).^2+.*(n(i)/1000).^.*(n(i)/1000).^4;

F5(i,k)=*3880*+.*ua(i,k)^2/;

Pe(i,k)=F5(i,k)*ua(i,k)/(3600*;

b5(i,k)=B(k,1)+B(k,2)*Pe(i,k)+B(k,3)*Pe(i,k)^2+B(k,4)*Pe(i,k)^3+B(k,5)*Pe(i,k)^4;

end

end

ua1=25;s1=50;

Fa5=*3880*+.*ua1.^2/;

Pe5=Fa5.*ua1/(3600*;

d1=polyfit(Pe(1,:

),b5(1,:

),3);

ba1=polyval(d1,Pe5);

d2=polyfit(Pe(2,:

),b5(2,:

),3);

ba2=polyval(d2,Pe5);

d3=polyfit(Pe(3,:

),b5(3,:

),3);

ba3=polyval(d3,Pe5);

d4=polyfit(Pe(4,:

),b5(4,:

),3);

ba4=polyval(d4,Pe5);

d5=polyfit(Pe(5,:

),b5(5,:

),3);

ba5=polyval(d5,Pe5);

ba=[ba1ba2ba3ba4ba5];

Qa1=Pe5.*ba*50/(ua1*102*7)

ua2=25:

40;

Q2=1+(2*Iw1+4*Iw2)/(m*r0^2)+If*Ig5

(2).^2*Ig0

(2)^2*gt/(m*r0^2)

Fb5=*3880*+.*ua2.^2/+Q2*m*;

Pb5=Fb5.*ua2/(3600*;

db1=polyfit(Pe(1,:

),b5(1,:

),3);

bb1=polyval(db1,Pb5);

db2=polyfit(Pe(2,:

),b5(2,:

),3);

bb2=polyval(db2,Pb5);

db3=polyfit(Pe(3,:

),b5(3,:

),3);

bb3=polyval(db3,Pb5);

db4=polyfit(Pe(4,:

),b5(4,:

),3);

bb4=polyval(db4,Pb5);

db5=polyfit(Pe(5,:

),b5(5,:

),3);

bb5=polyval(db5,Pb5);

bb=[bb1

bb2

bb3

bb4

bb5];

Pb=[Pb5

Pb5

Pb5

Pb5

Pb5];

Qb=Pb.*bb/*7);

fori=1:

5

forj=1:

15

qb(i,j)=Qb(i,j)+Qb(i,j+1);

end

end

Qb2=sum(qb')

ua3=40;s2=250;

Fc5=*3880*+.*ua3.^2/;

Pc5=Fc5.*ua3/(3600*;

dc1=polyfit(Pe(1,:

),b5(1,:

),3);

bc1=polyval(dc1,Pc5);

dc2=polyfit(Pe(2,:

),b5(2,:

),3);

bc2=polyval(dc2,Pc5);

dc3=polyfit(Pe(3,:

),b5(3,:

),3);

bc3=polyval(dc3,Pc5);

dc4=polyfit(Pe(4,:

),b5(4,:

),3);

bc4=polyval(dc4,Pc5);

dc5=polyfit(Pe(5,:

),b5(5,:

),3);

bc5=polyval(dc5,Pc5);

bc=[bc1bc2bc3bc4bc5];

Qc3=Pc5.*bc*250/(ua3*102*7)

ua4=40:

50;

Q4=1+(2*Iw1+4*Iw2)/(m*r0^2)+If*Ig5(4).^2*Ig0(4)^2*gt/(m*r0^2)

Fd5=*3880*+.*ua4.^2/+Q4*m*;

Pd5=Fd5.*ua4/(3600*;

dd1=polyfit(Pe(1,:

),b5(1,:

),3);

bd1=polyval(dd1,Pd5);

dd2=polyfit(Pe(2,:

),b5(2,:

),3);

bd2=polyval(dd2,Pd5);

dd3=polyfit(Pe(3,:

),b5(3,:

),3);

bd3=polyval(dd3,Pd5);

dd4=polyfit(Pe(4,:

),b5(4,:

),3);

bd4=polyval(dd4,Pd5);

dd5=polyfit(Pe(5,:

),b5(5,:

),3);

bd5=polyval(dd5,Pd5);

bd=[bd1

bd2

bd3

bd4

bd5];

Pd=[Pd5

Pd5

Pd5

Pd5

Pd5];

Qd=Pd.*bd/*7);

fori=1:

5

forj=1:

10

qd(i,j)=Qd(i,j)+Qd(i,j+1);

end

end

Qd4=sum(qd')

ua5=50;s2=250;

Ff5=*3880*+.*ua5.^2/;

Pf5=Ff5.*ua5/(3600*;

df1=polyfit(Pe(1,:

),b5(1,:

),3);

bf1=polyval(df1,Pf5);

df2=polyfit(Pe(2,:

),b5(2,:

),3);

bf2=polyval(df2,Pf5);

df3=polyfit(Pe(3,:

),b5(3,:

),3);

bf3=polyval(df3,Pf5);

df4=polyfit(Pe(4,:

),b5(4,:

),3);

bf4=polyval(df4,Pf5);

df5=polyfit(Pe(5,:

),b5(5,:

),3);

bf5=polyval(df5,Pf5);

bf=[bf1bf2bf3bf4bf5];

Qf5=Pf5.*bf*250/(ua3*102*7)

Qi=;

Qg=(50-25)/*;

Qg6=[QgQgQgQgQg]

Q=[Qa1

Qb2

Qc3

Qd4

Qf5

Qg6];

Qz=sum(Q)/1075*100

fork=1:

5

fori=1:

3401;

forj=1:

5;

n(i)=i+599;

ua(i,j)=*r0*n(i)./(Ig5(j)*Ig0(k));

Q(j)=1+(2*Iw1+4*Iw2)/(m*r0^2)+If*Ig5(j).^2*Ig0(k)^2*gt/(m*(r0)^2);

end

end

uamax=max(ua);

uamin=min(ua);

ua2=uamin

(2):

uamax

(2);

n=ua2*Ig0(k)*Ig5

(2)/*;

Ttq=+*(n/1000)*(n/1000).^2+*(n/1000).^*(n/1000).^4;

Ft2=Ttq*Ig0(k)*Ig5

(2)*;

F2=*3880*+*ua2.^2/;

a2=(Ft2-F2)./(Q

(2)*m);

t2=trapz(ua2,1./a2)/;

 

ua3=uamax

(2):

uamax(3);

n3=ua3*Ig0(k)*Ig5(3)/*;

Ttq3=+*(n3/1000)*(n3/1000).^2+*(n3/1000).^*(n3/1000).^4;

Ft3=Ttq3*Ig0(k)*Ig5(3)*;

F3=*3880*+*ua3.^2/;

a3=(Ft3-F3)./(Q(3)*m);

t3=trapz(ua3,1./a3)/;

 

ua4=uamax(3):

70;

n4=ua4*Ig0(k)*Ig5(4)/*;

Ttq4=+*(n4/1000)*(n4/1000).^2+*(n4/1000).^*(n4/1000).^4;

Ft4=Ttq4*Ig0(k)*Ig5(4)*;

F4=*3880*+*ua4.^2/;

a4=(Ft4-F4)./(Q(4)*m);

t4=trapz(ua4,1./a4)/;

t(k)=t2+t3+t4;

end

f=polyfit(Qz,t,2);

QQ=Qz

(1):

:

Qz(5);

b=polyval(f,QQ)

plot(QQ,b,Qz,t,'*')

gtext('')

gtext('')

gtext('')

gtext('')

gtext('')

title('燃油经济性-动力性曲线')

xlabel('燃油经济性/[L(100km)-1]')

ylabel('t/s')

四、一中型货车装有前后制动器分开的双管路制动系,其有关参数如下:

载荷

质量(kg)

质心高hg/m

轴距L/m

质心至前轴距离a/m

制动力分配系数β

空载

4080

满载

9290

1)计算并绘制利用附着系数曲线和制动效率曲线

2)求行驶车速Ua=30km/h,在

=路面上车轮不抱死的制动距离。

计算时取制动系反应时间

=,制动减速度上升时间

=。

3)求制动系前部管路损坏时汽车的制动距离s,制动系后部管路损坏时汽车的制动距离

Matlab程序:

m1=4080;hg1=;a1=;

m2=9290;hg2=;a2=;

beta=;L=;

z=0:

:

1

gf1=beta.*z*L./(L-a1+z*hg1);

gf2=beta.*z*L./(L-a2+z*hg2);

gr1=(1-beta).*z*L./(a1-z*hg1);

gr2=(1-beta).*z*L./(a2-z*hg2);

g=z;

fori=1:

21

if(z(i)<&z(i)>;

g3(i)=z(i)+;

end

if(z(i)>=;

g3(i)=+(z(i)/;

end

end

z1=:

:

;

g4=;

plot(z,gf1,'-.',z,gf2,z,gr1,'-.',z,gr2,z,g,z,g3,'xk',z1,g4,'x')

axis([010])

title('利用附着系数与制动强度的关系曲线')

xlabel('制动强度z/g')

ylabel('利用附着系数g')

gtext('空车前轴')

gtext('空车后轴')

gtext('满载前轴')

gtext('满载后轴')

gtext('ECE法规')

C=0:

:

1;

Er1=(a1/L)./((1-beta)+C*hg1/L)*100;

Ef=(L-a2)/L./(beta-C*hg2/L)*100;

Er=(a2/L)./((1-beta)+C*hg2/L)*100;

plot(C,Er,C,Ef,C,Er1)

axis([010100])

title('前后附着效率曲线')

xlabel('附着系数C')

ylabel('制动效率(%)')

gtext('满载')

gtext('Ef')

gtext('Er')

gtext('空载')

gtext('Er')

C1=

E1=(ak1/L)./((1-beta)+C1*hg1/L);

E2=(am2/L)/((1-beta)+C1*hg2/L);

a1=E1*C1*;

a2=E2*C1*;

ua=30;i21=;i22=;

s1=(i21+i22/2)*ua/+ua^2/*ak1);

s2=(i21+i22/2)*ua/+ua^2/*am2);

disp('满载时不抱死的制动距离=')

disp(s2)

disp('空载时不抱死的制动距离=')

disp(s1)

满载时不抱死的制动距离=

空载时不抱死的制动距离=

beta3=1

beta4=0

E

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 工作总结汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1