八年级上期中压轴题答案解析.docx
《八年级上期中压轴题答案解析.docx》由会员分享,可在线阅读,更多相关《八年级上期中压轴题答案解析.docx(11页珍藏版)》请在冰豆网上搜索。
八年级上期中压轴题答案解析
1、如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)
(1)求B点坐标;
(2)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°连OD,求∠AOD的度数;
(3)过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式
=1是否成立?
若成立,请证明:
若不成立,说明理由.
答案
解:
(1)作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB为等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);
(2)作AE⊥OB于E,DF⊥OB于F,
∵△ACD为等腰直角三角形,
∴AC=DC,∠ACD=90°即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
∴△DFC≌△CEA,
∴EC=DF,FC=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
∴∠DOF=45°,
∵△AOB为等腰直角三角形,
∴∠AOB=45°,
∴∠AOD=∠AOB+∠DOF=90°;
(3)
成立,理由如下:
在AM上截取AN=OF,连EN.
∵A(4,4),
∴AE=OE=4,
又∵∠EAN=∠EOF=90°,AN=OF,
∴△EAN≌△EOF(SAS),
∴∠OEF=∠AEN,EF=EN,
又∵△EGH为等腰直角三角形,
∴∠GEH=45°,即∠OEF+∠OEM=45°,
∴∠AEN+∠OEM=45°
又∵∠AEO=90°,
∴∠NEM=45°=∠FEM,
又∵EM=EM,
∴△NEM≌△FEM(SAS),
∴MN=MF,
∴AM﹣MF=AM-MN=AN,
∴AM-MF=OF,
即
。
7、如图,直线AB交x轴正半轴于点A(a,0),交y轴正半轴于点B(0,b),且a、b满足
+|4-b|=0
(1)求A、B两点的坐标;
(2)D为OA的中点,连接BD,过点O作OE⊥BD于F,交AB于E,求证∠BDO=∠EDA;
(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰Rt△PBM,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?
若不变,求其值;若变化,求线段OQ的取值范围.
答案
(1)
∴点A的坐标为(2,2),
(2)∵以AC为直角边作等腰直角△ACD,∠ACD=90°,
∴∠CAB+∠BAD=45°,∠CDB+∠BAD+∠ADC=90°,
∴∠CAB=∠CDB,
∴∠ABD=90°=∠OAB,
∴OA∥BD;
(3)过M作MD⊥x轴,垂足为D.
∵∠EPM=90°,
∴∠EPO+MPD=90°.
∵∠QOB=∠MDP=90°,
∴∠EPO=∠PMD,∠PEO=∠MPD.
在△PEO和△MPD中,
∠EPO=∠PMD
∠PEO=∠MPD
EP=MP
∴△PEO≌△MPD,
MD=OP,PD=AO=BO,
OP=OA+AP=PD+AP=AD,
∴MD=AD,∠MAD=45°.
∵∠BAO=45°,
∴△BAQ是等腰直角三角形.
∴OB=OQ=4.
∴无论P点怎么动OQ的长不变.
(3)AC=CD,且AC⊥CD.
连接OC,∵A的坐标是(2,2),
∴AB=OB=2,
∵△ABC是等边三角形,
∴∠OBC=30°,OB=BC,
∴∠BOC=∠BCO=75°,
∵在直角△ABO中,∠BOA=45°,
∴∠AOC=∠BOC-∠BOA=75°-45°=30°,
∵△OAD是等边三角形,
∴∠DOC=∠AOC=30°,
即OC是∠AOD的角平分线,
∴OC⊥AD,且OC平分AD,
∴AC=DC,
∴∠ACO=∠DCO=60°+75°=135°,
∴∠ACD=360°-135°-135°=90°,
∴AC⊥CD,
故AC=CD,且AC⊥CD.
答案
证明:
(1)∵∠BDC=∠BAC,∠DFB=∠AFC,
又∴∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,
∴∠ABD=∠ACD;
(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°.
∵∠ABD=∠ACD,AB=AC,
∴△ACM≌△ABN(AAS)
∴AM=AN.
∴AD平分∠CDE.(到角的两边距离相等的点在角的平分线上);
(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.
∵CD=AD+BD,∴AD=PD.
∵AB=AC,∠ABD=∠ACD,BD=CP,
∴△ABD≌△ACP.
∴AD=AP;∠BAD=∠CAP.
∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°.
∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.