#电力电子技术实验一二三.docx

上传人:b****8 文档编号:28070410 上传时间:2023-07-08 格式:DOCX 页数:14 大小:305.86KB
下载 相关 举报
#电力电子技术实验一二三.docx_第1页
第1页 / 共14页
#电力电子技术实验一二三.docx_第2页
第2页 / 共14页
#电力电子技术实验一二三.docx_第3页
第3页 / 共14页
#电力电子技术实验一二三.docx_第4页
第4页 / 共14页
#电力电子技术实验一二三.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

#电力电子技术实验一二三.docx

《#电力电子技术实验一二三.docx》由会员分享,可在线阅读,更多相关《#电力电子技术实验一二三.docx(14页珍藏版)》请在冰豆网上搜索。

#电力电子技术实验一二三.docx

#电力电子技术实验一二三

实验一锯齿波同步触发电路实验

一、实验目的

1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2、掌握锯齿波同步移相触发电路的调试方法。

二、实验主要仪器与设备:

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等几个模块。

2

DJK03-1晶闸管触发电路

该挂件包含“锯齿波同步移相触发电路”等模块。

3

双踪示波器

自备

三、实验原理

锯齿波同步移相触发电路的原理图如图1-1所示。

锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见电力电子技术教材中的相关内容。

图1-1锯齿波同步移相触发电路原理图

图1-1中,由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压UT来控制锯齿波产生的时刻及锯齿波的宽度。

由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R4、V3放电。

调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。

控制电压Uct、偏移电压Ub和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压Uct和偏移电压Ub的大小。

V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-2所示。

本装置有两路锯齿波同步移相触发电路,I和II,在电路上完全一样,只是锯齿波触发电路II输出的触发脉冲相位与I恰好互差180°,供单相整流及逆变实验用。

电位器RP1、RP2、RP3均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

图1-2锯齿波同步移相触发电路各点电压波形(α=90°)

四、实验内容及步骤

1、实验内容:

(1)锯齿波同步移相触发电路的调试。

(2)锯齿波同步移相触发电路各点波形的观察和分析。

2、实验步骤:

(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。

如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。

在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。

①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。

②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。

③调节电位器RP1,观测“2”点锯齿波斜率的变化。

④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。

(2)调节触发脉冲的移相范围

将控制电压Uct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=170°,其波形如图1-3所示。

图1-3锯齿波同步移相触发电路

(3)调节Uct(即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。

五、预习要求

(1)阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。

(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。

六、实验注意事项

(1)双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

(2)由于脉冲“G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100Ω左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则无法观察到正确的脉冲波形。

七、思考题

(1)锯齿波同步移相触发电路有哪些特点?

(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?

(3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?

八、实验报告

(1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。

(2)总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在Uct=0的条件下,使α=90°,如何调整?

(3)讨论、分析实验中出现的各种现象。

实验二单相桥式全控整流电路实验

一、实验目的

1、加深理解单相桥式全控整流及逆变电路的工作原理。

2、研究单相桥式变流电路整流的全过程。

二、实验主要仪器与设备

序号

型号

备注

1

DJK01电源控制屏

该控制屏包含“三相电源输出”,“励磁电源”等几个模块。

2

DJK02晶闸管主电路

该挂件包含“晶闸管”以及“电感”等几个模块。

3

DJK03-1晶闸管触发电路

该挂件包含“锯齿波同步触发电路”模块。

4

D42三相可调电阻

5

双踪示波器

自备

6

万用表

自备

三、实验原理

图2为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。

触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。

图2单相桥式整流实验原理图

四、实验内容及步骤

1、实验内容:

(1)触发电路的调试;

(2)单相桥式全控整流电路带电阻负载整流电压Ud和晶闸管两端电压uVT的波形;

(3)单相桥式全控整流电路带电阻电感负载整流电压Ud和晶闸管两端电压uVT的波形。

2、实验步骤:

(1)触发电路的调试

将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。

将控制电压Uct调至零(将电位器RP2顺时针旋到底),观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=180°。

将锯齿波触发电路的输出脉冲端分别接至全控桥相应晶闸管的门极和阴极,注意不要把相序接反了,将DJKO2上的正桥和反桥触发脉冲开关都打到“断”位置,使Ulf和Ulr悬空,确保晶闸管不被误触发。

(2)单相桥式全控整流电路带电阻性负载

按图2接线,将平波电抗器Ld(70OmH)短接并电阻器放在最大阻值处,按下“启动”按钮,保持Ub偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),在α=0°、30°、60°、90°、120°时,用示波器观察、记录整流电压Ud和晶闸管两端电压Uvt的波形,并记录电源电压U2和负载电压Ud的数值于表1中。

表1

(记录值)

(计算值)

(3)单相桥式全控整流电路带电阻电感性负载

按图2接线,将负载换成将平波电抗器Ld(70OmH)与电阻R串联。

,并电阻器放在最大阻值处。

按下“启动”按钮,保持Ub偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),用示波器观察不同控制角α时Ud、UVT、UVD1、Id的波形,并测定相应的U2、Ud数值,记录于表2中。

表2

(记录值)

(计算值)

五、实验注意事项

1、双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

2、在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。

六、思考题

单相桥式整流电路什么情况下会逆变失败?

七、实验报告

1、画出α=30°、60°、90°、120°时Ud和UVT的波形。

2、画出电路的移相特性Ud=f(α)曲线。

实验三三相半波可控整流电路实验

一、实验目的

1、了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

2、研究三相半波有源逆变电路的工作,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

二、实验所需挂件及附件

序号

1

DJK01电源控制屏

该控制屏包含“三相电源输出”等几个模块。

2

DJK02晶闸管主电路

3

DJK02-1三相晶闸管触发电路

该挂件包含“触发电路”,“正反桥功放”等几个模块。

4

DJK06给定及实验器件

该挂件包含“二极管”以及“开关”等模块。

5

DJK10变压器实验

该挂件包含“逆变变压器”以及“三相不控整流”。

6

D42

三相可调电阻

7

双踪示波器

自备

8

万用表

自备

三、实验线路及原理

三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。

不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3时间有电流流过,变压器利用率较低。

图3-1中晶闸管用DJK02正桥组的三个,电阻R用D42三相可调电阻,将两个900Ω接成并联形式,Ld电感用DJK02面板上的700mH,其三相触发信号由DJK02-1内部提供,只需在其外加一个给定电压接到Uct端即可。

直流电压、电流表由DJK02获得。

图3-1三相半波可控整流电路实验原理图

图3-2三相半波有源逆变电路实验原理图

图3-2中晶闸管可选用DJK02上的正桥,电感用DJK02上的Ld=700mH,电阻R选用D42三相可调电阻,将两个900Ω接成串联形式,直流电源用DJK01上的励磁电源,其中DJK10中的心式变压器用作升压变压器使用,变压器接成Y/Y接法,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出。

直流电压、电流表均在DJK02上。

四、实验内容

(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

(3)研究三相半波可控整流电路的有源逆工作状态。

五、预习要求

阅读电力电子技术教材中有关三相半波整流电路的内容。

六、思考题

(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?

(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?

(3)可控整流电路在β=60o和β=90o时输出电压有何差异?

七、实验方法

(1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”

端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=170°。

⑥适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。

(2)三相半波可控整流电路带电阻性负载

按图3-1接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应的电源电压U2及Ud的数值于下表中

α

30°

60°

90°

120°

150°

U2

Ud(记录值)

Ud/U2

Ud(计算值)

(3)三相半波整流带电阻电感性负载

将DJK02上700mH的电抗器与负载电阻R串联后接入主电路,观察不同移相角α时Ud、Id的输出波形,并记录相应的电源电压U2及Ud、Id值,画出α=90o时的Ud及Id波形图。

α

30°

60°

90°

120°

U2

Ud(记录值)

Ud/U2

Ud(计算值)

(4)三相半波整流及有源逆变电路

①按图3-2接线,将负载电阻放在最大阻值处,使输出给定调到零。

②按下“启动”按钮,此时三相半波处于逆变状态,α=150o,用示波器观察电路输出电压Ud波形,缓慢调节给定电位器,升高输出给定电压。

观察电压表的指示,其值由负的电压值向零靠近,当到零电压的时候,也就是α=90°,继续升高给定电压,输出电压由零向正的电压升高,进入整流区。

在这过程中记录α=30°、60°、90°、120°、150°时的电压值以及波形。

α

30°

60°

90°

120°

150°

U1

U1(计算值)

八、实验报告

绘出当α=90o时,整流电路供电给电阻性负载、电阻电感性负载时的Ud及Id的波形,并进行分析讨论。

九、注意事项

(1)双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

(2)在本实验中,触发脉冲是从外部接入DJK02面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。

(3)整流电路与三相电源连接时,一定要注意相序,必须一一对应。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1