北师大新版五年级数学上册总复习知识点整理.docx
《北师大新版五年级数学上册总复习知识点整理.docx》由会员分享,可在线阅读,更多相关《北师大新版五年级数学上册总复习知识点整理.docx(6页珍藏版)》请在冰豆网上搜索。
北师大新版五年级数学上册总复习知识点整理
第一单元 倍数与因数(在自然数(0除外)范围内研究倍数和因数。
)
1、像0、1、2、3、4、5、6……这样的数是自然数。
2、像-3、-2、-1、0、1、2、3……这样的数是整数。
3、※一个数只有1和它本身两个因数,这个数叫质数。
※一个数除了1和它本身以外还有别的因数,这个数叫合数。
※1既不是质数,也不是合数。
20以内的质数和合数:
质数:
2、3、5、7、11、13、17、19
合数:
4,6,8,10,12,14,15,16,18,20
1既不是质数也不是合数。
4、倍数和因数:
举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。
5、找倍数:
从1倍开始有序的找。
6、一个数倍数的特点:
①一个数的倍数的个数是无限的;
②最小的倍数是它本身;③没有最大的倍数。
7、找因数:
找一个数的因数,一对一对有序的找较好。
8、一个数因数的特点:
①一个数的因数的个数是有限的;
②最小的因数是1;③最大的因数是它本身。
9、2的倍数的特征:
个位是0、2、4、6、8的数是2的倍数。
10、奇数和偶数:
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
按一个数是不是2的倍数来分,自然数可以分成两类:
奇数和偶数
11、5的倍数的特征:
个位是0或5的数是5的倍数。
12、3的倍数的特征:
各个数位上的数字的和是3的倍数,这个数就是3的倍数。
13、既是2的倍数又是5的倍数的特征:
个位是0的数。
既是2的倍数又是3的倍数的特征:
①个位是0、2、4、6、8的数;②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:
①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征:
①个位是0的数;②各个数位上的数字的和是3的倍数
9的倍数的特征:
各个数位上的数字的和是9的倍数,这个数就是9的倍数。
14、按一个数的因数个数分,自然数可以分为三类:
质数、合数和1。
第二单元 图形的面积
(一)
1、 长方形周长=(长+宽)×2 C=2(a+b)
2、 长方形面积=长×宽 S=ab
3、 正方形周长=边长×4 C=4a
4、 正方形面积=边长×边长 S=a2
5、 平行四边形面积=底×高 S=ah
6、 平行四边形底=面积÷高 a=S÷h
7、 平行四边形高=面积÷底 h=S÷a
8、 三角形面积=底×高÷2 S=ah÷2
9、 三角形底=面积×2÷高 a=2S÷h
10、 三角形高=面积×2÷底 h=2S÷a
11、 梯形面积=(上底+下底)×高÷2 S=(a+b)h÷2
12、 梯形高=梯形面积×2÷(上底+下底) h=2S÷(a+b)
13、 梯形上底=梯形面积×2÷高-下底 a=2S÷h-b
14、 梯形下底=梯形面积×2÷高-上底 b=2S÷h-a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、分数:
把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:
把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
表示其中的一份的数,叫做这个分数的分数单位。
3、真分数:
分子小于分母的分数叫做真分数。
真分数小于1。
4、 假分数:
分子大于或等于分母的分数,叫做假分数。
假分数都大于或等于1。
5、假分数化成带分数:
用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
6、 几个数公有的因数叫做这几个数的公因数。
其中最大的一个,叫做它们的最大公因数。
用短除法求最大公因数。
7、 互质:
两个数的公因数只有1,这两个数叫做互质。
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;(4) 两个不同的质数互质
(5) 2和任何奇数互质。
质数与互质的区别:
质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
8、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
用短除法求最小公倍数。
9、
关系
最大公因数
最小公倍数
倍数关系
较小数
较大数
互质关系
1
他们的乘积
一般关系
大数翻倍法(短除法)
大数翻倍法(短除法)
10、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。
11、 约分:
把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。
计算结果通常用最简分数表示。
12、 通分:
把异分母分数分别化成同分母分数,叫通分。
通常用最小公倍数做分数的分母较简便。
13、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比。
14、 分数基本性质:
分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。
15、
的意义:
①把单位“1”平均分成4份,表示这样的3份。
②把3平均分成4份,表示这样的1份。
数学与交通:
1、 相遇问题:
基本公式:
一个人走:
速度×时间=路程
两个人同时相对而行:
速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、 旅游费用:
①购票方案:
根据人数的多少,价格的不同以及团体优惠人数的多少,合理选择一种方案购票或几种方案结合起来购票。
若只有A、B两种方案是,只要选择其中一种价格便宜的就行。
②租车问题:
两个原则:
一是尽量多的使用更便宜的车;
二是空位越少越好。
3、 看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行驶;线往下画,说明减速。
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明原地不动;线往下画,说明又从终点回到某地。
第四单元 分数加减法
1、异分母分数加减法方法:
先通分,化成同分母分数,再按照同分母分数加减法的方法进行计算。
2、分数加减法对计算结果的要求:
能约分的要约分,一定要约成最简分数。
3、分数化成小数的方法:
用分子除以分母,除不尽的,按题目要求保留一定位数的小数,没有要求时,一般保留三位小数。
4、小数化成分数的方法:
看小数部分有几位,就在1后面加几个零做分母,去掉小数点做分子,能约分的要约分。
第五单元 图形的面积
(二)
1、求组合图形面积的方法:
① 分割法:
根据图形和所给的条件,将图形进行合理的分割,形成基本图形,基本图形面积的和就是组合图形面积。
② 添补法:
将图形所缺部分进行添补,组成几个基本图形。
基本图形面积-添补的图形面积=组合图形面积。
2、不规则图形面积的估计与计算:
①数格子的方法;
②根据不规则图形确定近似的基本图形,量出求基本图形的面积是所需要的条件算出面积。
鸡兔同笼:
方法:
①列表法:
一般采用取中间数列表的方法;
②画图法;
③假设法;
④列方程:
根据关系式:
“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解答。
点阵中的规律:
1、数与数之间的变化规律:
根据已知数前后或上下之间的关系,找到其中的规律,得出相应的数。
2、图形与图形之间的变化规律:
观察图形的变化,可以从图形的形状、数量、大小等方面入手,从中找到规律,推导出后面的图形。
第六单元 可能性大小
1、确定事件的表示方法:
用1表示事件一定发生,用0表示事件一定不会发生。
2、可能出现的事件的表示方法:
用分数表示可能性的大小,首先明确事件可能出现的所有情况作分母,其次把可能出现的结果做分子。
3、设计活动方案:
充分认识用来表示可能性的分数的含意,即:
事件可能出现的所有情况作分母,把可能出现的结果做分子。
铺地砖:
1、长方形的面积=长×宽, 正方形的面积=边长×边长
2、面积单位之间的关系:
1平方米=100平方分米=10000平方厘米
1平方分米=100平方厘米
3、求地面铺地砖总块数的方法:
①用房间面积÷每块地砖的面积=所铺地砖的块数
②用每平方米所需的块数×房间总面积=所铺地砖的块数
③看长里有多少个地砖的边长,宽里有多少个地砖的边长,再用长里所需的块数乘以宽里所需的块数,
④用方程解
⑤所注意的问题:
最后的结果不是整块数时,一定要用进一法却近似值,求出的钱数最后结果要自觉保留两位小数。