新版四年级下册数学教案第四单元小数的意义和性质.docx
《新版四年级下册数学教案第四单元小数的意义和性质.docx》由会员分享,可在线阅读,更多相关《新版四年级下册数学教案第四单元小数的意义和性质.docx(23页珍藏版)》请在冰豆网上搜索。
新版四年级下册数学教案第四单元小数的意义和性质
第四单元小数的意义和性质
教学目标:
1.使学生理解小数的意义,认识小数的计数单位,会读、写小数,会比较小数的大小。
2.使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。
教学重点:
理解小数的意义和性质,掌握小数点位置移动引起小数大小变化的规律。
教学难点:
理解小数的意义和性质,掌握小数点位置移动引起小数大小变化的规律。
内容分析:
本单元的内容主要有小数的意义(小数的意义、小数的读写)和性质(小数的性质)、小数的大小比较(小数的大小比较、小数点位置移动引起小数大小变化)。
这些内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上教学的,是学生系统学习小数的开始。
通过这部分内容的教学,使学生进一步理解小数的意义和性质,为今后学习小数四则运算打好基础。
课题:
小数的意义
教学内容:
教科书第32页例1及做一做。
教学目标:
1、在生活情境中了解小数的产生,体会数学与自然及人类社会的密切联系,了解数学的价值,增强对数学的理解和应用数学的信心。
2、通过探究小数与分数、整数的内在联系,理解小数的意义。
3、通过分析、对比、概括培养学生的思维能力,初步渗透对应思想和分类思想。
教学重点、难点:
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,?
?
的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点。
教学设计
一、谈话引入:
在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?
(1)1角=()元
(2)3角=()元
(3)9分=()元今天我们继续学习小数。
(板书课题:
小数的意义)
二、学习新课
师:
在日常生活中,除了商品标价不够整元可以用小数外。
在量屋子的高度时,它不够整米时,以米作单位也常用小数表示。
1、教学小数的意义。
(1)教学一位小数
把刚才的题目稍作更改:
(出示米尺)
把一条长1米的线段平均分成10份,这样1份是米,用小数表示是()米。
板书:
1分米3分米7分米
1/10米3/10米7/10米
0.1米0.3米0.7米
小结:
把1米平均分成10份,这样的一份或几份的数可以用一位小数表示,写在小数点右面的第一位,表示十分之几。
小练:
如果8分米呢?
以米为单位,怎么写成分数和小数?
9分米呢?
(2)教学两位小数
把刚才的题目再做更改:
(出示放大的1分米)题目和上面哪里不一样?
答案一样吗?
把一条长1米的线段平均分成100份,这样1份是米,用小数表示是()米。
板书:
1cm4cm8cm
1/100m4/100m8/100m
0.01m0.04m0.08m
小结:
把1米平均分成100份,这样的一份或几份的数可以用两位小数表示,写在小数点右面的第二位,表示百分之几。
小练:
如果28厘米呢?
以米为单位怎么写成分数和小数?
70厘米呢?
(3)教学三位小数
把一条长1米的线段平均分成1000份,这样1份是米,用小数表示是()米。
板书:
1毫米13毫米123毫米
1/1000米13/1000米123/1000米
0.001米0.013米0.123米
小结:
把1米平均分成1000份,这样的一份或几份的数可以用两位小数表示,写在小数点右面的第三位,表示千分之几。
小练:
256毫米呢?
999毫米呢?
指名学生出题,全班化成分数和小数。
(4)师:
我们还可以照前面的方法继续分下去,可以得到四位、五位......小数。
启发学生根据前面3个问题的研究,可以得出什么结论?
(把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成1000份,1份或几份可以用三位小数表示......)
2、小结:
像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数。
小数的计数单位是十分之一、百分之一、千分之一......,分别写作0.1,0.01,0.001......等。
(阅读课本)
3、P34做一做
4、强化概念.启发性提问:
①十分之几的数用几位小数表示?
一位小数表示几分之几?
一位小数的计数单位是多少?
②百分之几的数用几位小数表示?
两位小数表示几分之几?
两位小数的计数单位是多少?
③千分之几的数用几位小数表示?
三位小数表示几分之几?
三位小数的计数单位是多少?
④每相邻两个单位间的进率是多少?
三、巩固练习:
练习九1——4
课题:
小数的读法和写法
教学内容:
教科书第34-35页例2-4及做一做。
教学目标:
会正确读、写小数,并进一步理解小数的意义。
教学重点:
会正确读、写小数
教学难点:
进一步理解小数的意义
一、复习引入
1、0.2是()位小数,它表示()分之();
0.15是()位小数,它表示()分之();
0.008是()位小数,它表示()分之()。
2.0.4的计数单位是(),它有()个这样的计数单位;0.07的计数单位是(),它有()个这样的计数单位;0.138的计数单位是(),它有()个这样的计数单位。
二、新知学习
1.教学小数的数位顺序表。
师:
前面我们看到的一些小数如0.2、0.15等,这些小数的小数点左边的数都是0。
其实小数点的左边也可以是其它的数,如1.8米、5.63米、12.378等。
这样的小数可以分成两部分,小数点的左边是整数部分,小数点的右边是小数部分,小数的整数部分和小数的小数部分中间被小数点隔开。
教师同时在黑板上写出小数的数位顺序表的表头,如:
整数部分 小数点 小数部分
1 . 8
5 . 63
12 . 378
谁还记得整数的数位顺序?
每个数位的计数单位是什么?
相邻两个计数单位之间的进率是多少?
师:
0.2表示十分之二,它表示有两个十分之一,十分之—是它的计数单位;0.05表示百分之五,它表示有五个百分之—,百分之一是它的计数单位;0.006表示千分之六,它表示有六个干分之一,千分之一是它的计数单位。
那么小数的计数单位有十分之—、百分之一、千分之一,还有万分之一等。
“这些小数的计数单位哪个最大?
”
“多少个十分之一是整数1?
”
“多少个百分之一是十分之一?
”
“多少个千分之一是百分之一?
”
师:
小数的这些计数单位十分之—、百分之—、千分之—、万分之—等,相邻两个计数单位之间的进率是10。
这和整数相邻两个计数单位之间的进率是—样的,都是10。
因此一个小数的小数部分可以用小数点与整数部分隔开,排在整数部分的右面,像整数一样计数。
“10个十分之一是整数1,那么整数个位的右边应该是哪一位?
”
“把十分之一分成10等份,每一份是多少?
”
“那么十分位的右边应该是哪一位?
”
“把百分之一分成10等份,每一份是多少?
”
“百分位的右边应该是哪一位呢?
”
“十分之几的计数单位是多少?
”
“百分之几的呢?
千分之几的呢?
”
教师边在黑板上列出小数部分的数位顺序边说明:
再往下还有万分位、十万分位、百万分位等,因为小数位较多的不常用,我们在数位表上就用“......”表示。
前面我们讲过在整数的右边,用小数点隔开,用来表示十分之几、百分之几、千分之几、?
?
的数,叫做小数。
实际应用时常把整数和小数写在—起,这样的数也叫小数。
再边说边在黑板上写如1.8、5.63、12.378等也都是小数。
小数点左边的数叫整数部分,小数点右边的数叫小数部分。
教师指12.378提问:
“这个小数的整数部分中的每一位分别是什么位?
”
“这个小数的小数部分的十分位是几?
百分位是几?
千分位呢?
”
P36做一做1
2.教学小数的读法。
教师在黑板上写出下面的小数:
0.58、3.5、41.47。
提问:
谁能读出黑板上的小数?
”
学生读出前两个小数后,教师说明:
这样的小数是我们过去学过的,后面一个小数的数值比较多,它们的读法也是整数部分仍按照整数的读法来读,小数点就读点,小数部分通常就按顺序读出每一位上的数字就可以了。
3.教学小数的写法。
师:
写小数过去我们学过一些.下面我们大家一起来写一写。
三、巩固练习
教师报出教科书第36页例4和“做一做”第2题中的小数,让两个学生在黑板上写,其余的学生写在自己的练习本上。
写完后教师结合学生出现的问题再讲解。
四、总结:
写小数的时候,整数部分仍按照整数的写法来写,如果整数部分是零就写0;小数点写在个位的右下角,要写成小圆点;小数部分按顺序写出每一个数位上的数字。
课题:
小数的性质
教学内容:
教科书38-39页.
教学目标:
1、理解和掌握小数的性质。
2、学生学会利用小数的性质对小数进行化简和改写。
教学重点、难点:
正确理解小数的末尾田上0或者去掉0,小数大小不变的性质。
教学设计:
一、复习引入
0.3是()分之一
0.30是()个百分之一
0.123是()个千分之一
二、新课学习
师:
在商店里,商品的标价经常写成这样:
这里的2.50元和8.00元各表示多少钱呢?
2.50元和2.5元,8.00元和8元有什么关系呢?
1.理解小数的性质。
(1)例1比较0.1米、0.10米和0.100米的大小。
启发提问:
①0.1米是几个几分之一米?
可以用哪个比较小的单位来表示?
(1个十分之一米,1分米)
②0.10米是几个几分之一米?
可以用哪个比较小的单位来表示?
(10个百分之一米,10厘米)
③0.100米是几个几分之一米?
可以用哪个比较小的单位来表示?
(100个千分之一米,是l00毫米)
④观察1分米、10厘米、loo毫米它们的长度怎样?
你能得出什么结论?
(它们的长度是一样的)可以得出:
(0.1米=0.10米=0.100米。
(板书)
请同学们继续观察这3个小数。
①小数的末尾有什么变化?
②小数的大小有什么变化?
③你能得出什么结论?
引导学生讨论后归纳出:
在小数的末尾添上“0”,小数的大小不变。
(2)例2比较0.30和0.3的大小。
启发提问:
①0.30表示几个几分之一?
左图应平均分成多少份?
用多少份来表示?
(30个1/100,平均分成100份,用30份表示。
)
②0.3表示几个几分之一?
右图应平均分成多少份?
用多少份来表示?
(3个1/10,平均分成10份,用3份来表示。
)
③两个图形所占面积大小怎样?
(移动投影片,学生易看出0.30=0.3)
④为什么这两个数相等?
讨论后得知:
10个1/100是1个1/10,30个1/100是3个1/10所以这两个数相等。
引导学生观察这个等式,从左往右看,小数末尾有什么变化?
小数大小有什么变化?
你能得出什么结论?
启发学生归纳出:
在小数的末尾去掉“0”,小数的大小不变。
(3)引导学生归纳、概括。
通过对例1、例2的研究,你能把上面的两个结论归纳成为一句话吗?
启发学生概括出:
在小数的末尾添上“0”或者去掉“0”,小数的大小不变。
这叫做小数的性质。
(板书)
理解小数性质的时候,要注意什么?
(要在小数的末尾添“0”或去“0”,小数中间的0不能去掉)。
2.小数性质的应用。
我们学习了小数的性质,遇到小数末尾有“o”的时候,可以去掉末尾的“0”,把小数化简。
(1)教学例3:
把0.70和105.0900化简。
启发学生根据小数的性质可以得出:
0.70=0.7105.0900=105.09
有时根据需要,可以在小数的末尾添上“0”,还可以在整数的个位有下角点上小数点,再添上“0”,把整数改写成小数的形式。
例如2.5元可改写成2.50元。
3元改写成3.00元。
(2)教学例4:
不改变数的大小,把0.2,4.08,3改写成小数部分是三位的小数。
0.2=0.2004.08=4.0803=3.000
三、巩固练习:
P39做一做
四、总结:
在小数的末尾添上“0”或者去掉“0”,小数的大小不变。
这叫做小数的性质。
五、作业练习十2、4、5题。
板书设计
小数的性质
小数的末尾添上“0”或者去掉“0”,小数的大小不变。
这叫做小数的性质。
课题:
小数的大小比较
教学内容:
教科书40页例5.做一做。
教学目标
1.学生熟练掌握比较小数大小的方法和步骤,并能根据要求排列几个数的大小。
2.通过对小数大小的比较,加深学生对小数意义的理解。
3.在学习过程中,培养学生观察、比较和概括的能力。
教学重点:
小数大小的比较方法和步骤。
教学难点:
小数位数不同时比较大小容易与整数比较大小的方法混淆。
教学设计:
一、复习引入:
832○7996124○62141003○999
说说怎样比较整数的大小?
师:
我们已经掌握了整数比较大小的方法,那么小数比较大小的方法也是从高位比起,一位一位地比较。
今天就来研究小数比较大小的方法。
(板书课题:
小数大小的比较)
二、学习新课
1、出示例5:
姓名成绩/m
小明3.05
小红2.84
小莉2.88
小军2.93
问:
你能给他们排出名次吗?
明确:
先比较整数部分
3>2,所以3.05是最大的。
整数部分相同,再比较小数部分:
2.84、2.88、2.93整数部分都相同,则比较小数部分十分位,9>8,所以2.93>2.8()
十分位相同,再比较百分位,8>4,所以2.88>2.84
最后比较结果:
3.05>2.93>2.88>2.84
2、根据刚才的比较,你可以得出什么结论?
引导学生概括:
比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;当整数部分相同时,看十分位,十分位上的数大的那个数就大;整数部分和十分位上的数都相同,要看百分位上的数,百分位上数大的那个数就大。
3、练习:
P41做一做
三、巩固练习:
练习十
四、课堂总结
今天有什么收获?
五、作业
练习十6、7题。
板书设计
小数的大小比较
比较小数的大小,先看整数部分,整数部分大的小数就大。
如果整数部分相同,就比较十分位,十分位上大的小数就大。
十分位相同就看百分位,直到比较出大小为止。
课题:
小数点位置移动引起小数大小的变化
教学内容:
教科书43页例1.
教学目标:
1.理解和掌握小数点位置移动引起小数大小的变化规律
2.通过总结规律的过程,培养学生观察比较,概括的能力。
教学重点、难点:
小数点位置移动引起小数大小的变化规律,归纳“规律”的过程,既是教学的重点,又是学生学习的难点。
教学设计
一、复习导入:
板书:
35.673.567356.73567比较大小。
问:
这四个数有什么相同特点?
(数字及排列顺序一样。
)有什么不同?
(小数点位置不同,大小不同。
)
二、新知探究
从上题可见小数点的位置直接影响到小数的大小。
那么,小数点的位置移动会引起小数大小怎样的变化呢?
今天我们一起研究。
板书课题:
小数点位置移动的规律。
1、例1把0.009米的小数点向右移动一位、两位、三位......小数的大小有什么变化?
(1)0.009米等于多少毫米?
(板书:
0.009米=9毫米)
(2)师移动0.009米的小数点。
向右移动一位,变为多少毫米?
大小发生了什么变化?
(板书:
0.09米=90毫米,原数扩大10倍)
向右移动两位,原数变为多少?
是多少毫米?
大小有什么变化?
(板书:
0.9米=900毫米,原数扩大l00倍)
向右移动三位,原数又变成多少?
是多少毫米?
大小又发生了什么变化?
(板书:
9米=9000毫米,原数扩大1000倍)
小数点可不可以向右移动四位、五位甚至更多位?
师:
所以我们要在移动位数和扩大倍数的后边点上省略号。
(3)从这一例子看,小数点向右移动会引起原数怎样的变化?
你能总结出规律来吗?
引导学生总结出:
小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大loo倍;小数点向右移动三位,原来的数就扩大1000倍......
2.刚才是由上往下观察(画↓),如果我们由下往上观察(板书↑),小数点相当于往哪边移动?
(向左移动),小数点向左移动了几位?
原来的数会有怎样的变化?
(小组讨论)
全班交流讨论结果,引导学生得出:
小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小l000倍......(板书)
3.引导学生完整地概括小数点移动位置引起小数大小的变化规律。
(在书上补充完整)
4.强调:
掌握小数点移位的规律,一要注意移动方向与变化的关系,就是左移就缩小,右移就扩大;二是要注意移动位数与变化的倍数的关系,移动一位,变化的倍数是10倍,移动两位,变化倍数是100倍,移动三位,变化倍数是l000倍......
三、巩固练习:
P45做一做
四、小结:
掌握小数点移位的规律,一要注意移动方向与变化的关系,就是左移就缩小,右移就扩大;二是要注意移动位数与变化的倍数的关系,移动一位,变化的倍数是10倍,移动两位,变化倍数是100倍,移动三位,变化倍数是l000。
五、布置作业
练习十一1-3题。
板书设计
小数点位置移动引起小数大小的变化
小数点向右移动一位,相当于把原数乘10,小数就扩大到原数的10倍;
小数点向右移动两位,相当于把原数乘100,小数就扩大到原数的100倍;
小数点向右移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍;
小数点向右移动四位,相当于把原数乘10000,小数就扩大到原数的10000倍;
小数点向左移动一位,相当于把原数除以10,小数就缩小到原数的1/10;
小数点向左移动两位,相当于把原数除以100,小数就缩小到原数的1/100;
小数点向左移动三位,相当于把原数除以1000,小数就缩小到原数的1/1000;
小数点向左移动四位,相当于把原数除以10000,小数就缩小到原数的1/10000;
课题:
小数点位置移动及规律的应用
教学内容:
教科书44页例2.3
教学目标:
牢固掌握小数点位置移动的变化规律,并会应用规律把一个数扩大或缩小10倍、100倍、l000倍。
教学重点:
会应用规律把一个数扩大或缩小10倍、100倍、1000倍
教学难点:
向右移动时位数不够要在右边添“0”,前面最高位的零必须去掉;向左移动时,位数不够时要在数的左边用“0”补足。
教学设计
一、复习引入:
1、小数点向左移动三位,原数就()。
2、小数点向右移动两位,原数就()。
3、5.24要扩大10倍,小数点向()移动()位,得()。
4、把42.7写成0.427,小数点向()移动()位。
5、说说小数点移位的变化规律。
6、如果把3扩大10倍,100倍,1000倍应怎样列式?
得多少?
7、如果把5000缩小10倍,l00倍,1000倍应怎样计算?
各得多少?
二、新知学习
师:
我们已经学过把一个数扩大倍数要用乘法计算,把一个数缩小倍数用除法计算,我们今天应用学过的小数点移位的变化规律,要把一个数扩大或缩小10倍,100倍,1000倍,只要移动小数点的位置就可以了。
怎样移动呢?
(板书课题:
小数点位置移动规律的应用)
1、教学例2
(1):
把0.07扩大l0倍、100倍、1000倍,各是多少?
提问:
(1)把一个数扩大倍数用什么方法计算?
(用乘法计算)
(2)怎样列式?
(把0.08分别乘以10,100,1000)
板书:
0.07×10=0.7
0.07×100=7
0.07×1000=70
(3)根据学过的规律,应怎样移动小数点?
启发学生分别说出移动的位数及得数。
(板书)
(4)为什么0.07×1000得70?
(因为要扩大1000倍,需向右移动三位,而原数只有两位小数,还差一位,所以要在右边添一个0,补足数位。
)
(5)0.07×100=7,为什么向右移动两位后得7,而不写成007?
引导学生明确,小数点向右移动后,不是零的最高位前面的零必须去掉,如0.07扩大1000倍得70,而不能得0070。
小结式提问:
根据上面的计算,要把一个数扩大10倍、100倍、1000倍,只要怎样就可以了?
(只要把小数点向右移动就可以了)
(6)练习:
P45做一做1
2、教学例2
(2):
把3.2缩小10倍,100倍,1000倍各是多少?
(1)思考一下,把一个数缩小倍数应用什么方法计算?
怎样应用小数点移动的规律?
可能会出现什么情况?
如何解决?
板书:
3.2÷10=0.32
3.2÷100=0.032
3.2÷1000=0.0032
(2)说明:
3.2÷100,小数点向左移动两位后,整数部分没有了,用0表示,所以在小数左边还要添一个0,表示整数部分是“0”。
启发学生说一说,为什么3.2÷1000=0.0032?
从而强调,小数点向左移动三位,左边小数位数不够,要在左边用“0”补足,缺几位就补几个“0”,再点上小数点,左边整数部分也没有了,因此小数点左边还要添一个“0”,表示整数部分是“0”,所以3.2缩小1000倍得0.0032。
(3)练习:
P44做一做2
3、总结性提问:
(1)小数点向左或右移动的方向根据什么?
(2)小数点位置移动的位数由什么来决定?
(3)应用小数点移位规律时应注意什么?
4、教学例3
(1)阅读课文,自学
(2)做一做
三、巩固练习:
练习十一余下题。
首先让学生独立试算,然后二人议论,最后全班交流。
四、课后总结
通过这节课的学习,你有什么收获?
五、作业。
练习十一5-8题。
板书设计
小数点位置移动及规律的应用
0.1563×10000=1563美元
课题:
小数与单位换算
(1)
教学内容;教材48页例1.
教学目标
1.使学生掌握低级单位向高级单位进行单名数互化的方法.
2.理解单名数互化的理由.
3.渗透事物是普遍联系的观点.
教学重点:
低级单位向高级单位进行单名数互化的方法.
教学难点:
复名数化单名数用小数表示的方法.
教学设计
一、创设情境
出示4个小朋友的身高数据,按高矮顺序排排队。
1、你有什么感觉?
怎样比较方便呢?
2、在实际生活和计算中,有时需要把不同计量单位的数据进行改写,改成相同计量单位。
二、自主探究
把上面的数据改写成以米为单位的数
1、80cm=()m
(1)学生先独立练习,然后总结自己的改写方法.
(2)策划自己的表达方案,小组讨论.
(3)全班交流.
方法一:
80c