人教版高中生物必修2全册教案版34页.docx
《人教版高中生物必修2全册教案版34页.docx》由会员分享,可在线阅读,更多相关《人教版高中生物必修2全册教案版34页.docx(46页珍藏版)》请在冰豆网上搜索。
人教版高中生物必修2全册教案版34页
人教版高中生物必修2全册教案(版,34页)
第一章遗传因子的发现
考纲要求:
分析孟德尔实验的科学方法,阐明基因分离定律和基因自由组合定律
自交
隐性遗传因子隐性性状
性状分离杂合子相对性状
表现
显性遗传因子显性性状
一、孟德尔简介
二、杂交实验
(一)1956----1864------1872
1.选材:
豌豆自花传粉、闭花受粉纯种
性状易区分且稳定真实遗传
2.过程:
人工异花传粉一对相对性状的正交
P(亲本)高茎DDX矮茎dd互交反交
F1(子一代)高茎Dd纯合子、杂合子
F2(子二代)高茎DD:
高茎Dd:
矮茎dd
1:
2:
1分离比为3:
1
3.解释
①性状由遗传因子决定。
(区分大小写)②因子成对存在。
③配子只含每对因子中的一个。
④配子的结合是随机的。
4.验证测交(F1)DdXddF1是否产生两种
高1:
1矮比例为1:
1的配子
5.分离定律
在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
6.孟德尔之所以选取豌豆作为杂交试验的材料是由于:
(1)豌豆是自花传粉植物,且是闭花授粉的植物;
(2)豌豆花较大,易于人工操作;
(3)豌豆具有易于区分的性状。
7.遗传学中常用概念及分析
(1)性状:
生物所表现出来的形态特征和生理特性。
相对性状:
一种生物同一种性状的不同表现类型。
举例:
兔的长毛和短毛;人的卷发和直发等。
性状分离:
杂种后代中,同时出现显性性状和隐性性状的现象。
如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。
显性性状:
在DD×dd杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。
决定显性性状的为显性遗传因子(基因),用大写字母表示。
如高茎用D表示。
隐性性状:
在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。
决定隐性性状的为隐性基因,用小写字母表示,如矮茎用d表示。
(2)纯合子:
遗传因子(基因)组成相同的个体。
如DD或dd。
其特点纯合子是自交后代全为纯合子,无性状分离现象。
杂合子:
遗传因子(基因)组成不同的个体。
如Dd。
其特点是杂合子自交后代出现性状分离现象。
(3)杂交:
遗传因子组成不同的个体之间的相交方式。
如:
DD×ddDd×ddDD×Dd等。
自交:
遗传因子组成相同的个体之间的相交方式。
如:
DD×DDDd×Dd等
测交:
F1(待测个体)与隐性纯合子杂交的方式。
如:
Dd×dd
正交和反交:
二者是相对而言的,
如甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交;
如甲(♂)×乙(♀)为正交,则甲(♀)×乙(♂)为反交。
8.杂合子和纯合子的鉴别方法
若后代无性状分离,则待测个体为纯合子
测交法
若后代有性状分离,则待测个体为杂合子
若后代无性状分离,则待测个体为纯合子
自交法
若后代有性状分离,则待测个体为杂合子
9.常见问题解题方法
(1)如后代性状分离比为显:
隐=3:
1,则双亲一定都是杂合子(Dd)
即Dd×Dd3D_:
1dd
(2)若后代性状分离比为显:
隐=1:
1,则双亲一定是测交类型。
即为Dd×dd1Dd:
1dd
(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。
即DD×DD或DD×Dd或DD×dd
三、杂交实验
(二)
1.黄圆YYRRX绿皱yyrr
黄圆YyRr
黄圆Y_R_:
黄皱Y_rr:
绿圆yyR_:
绿皱yyrr亲组合
9:
3:
3:
1重组合
2.两对相对性状杂交试验中的有关结论
(1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。
(2)F1减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非等位基因)自由组合,且同时发生。
(3)F2中有16种组合方式,9种基因型,4种表现型,比例9:
3:
3:
1
YYRR1/16
YYRr2/16
亲本类型
双显(Y_R_)YyRR2/169/16黄圆
YyRr4/16
纯隐(yyrr)yyrr1/161/16绿皱
YYrr1/16
重组类型
单显(Y_rr)YYRr2/163/16黄皱
yyRR1/16
单显(yyR_)yyRr2/163/16绿圆
注意:
上述结论只是符合亲本为YYRR×yyrr,但亲本为YYrr×yyRR,F2中重组类型为10/16,亲本类型为6/16。
3.常见组合问题
(1)配子类型问题
如:
AaBbCc产生的配子种类数为2x2x2=8种
(2)基因型类型
如:
AaBbCc×AaBBCc,后代基因型数为多少?
先分解为三个分离定律:
Aa×Aa后代3种基因型(1AA:
2Aa:
1aa)
Bb×BB后代2种基因型(1BB:
1Bb)
Cc×Cc后代3种基因型(1CC:
2Cc:
1cc)
所以其杂交后代有3x2x3=18种类型。
(3)表现类型问题
如:
AaBbCc×AabbCc,后代表现数为多少?
先分解为三个分离定律:
Aa×Aa后代2种表现型
Bb×bb后代2种表现型
Cc×Cc后代2种表现型
所以其杂交后代有2x2x2=8种表现型。
4.自由组合定律
实质是形成配子时,成对的基因彼此分离,决定不同性状的基因自由组合。
5.常见遗传学符号
符号
P
F1
F2
×
♀
♂
含义
亲本
子一代
子二代
杂交
自交
母本
父本
6.自由组合定律
控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
四、孟德尔遗传定律史记
①1866年发表②1900年再发现
③1909年约翰逊将遗传因子更名为“基因”基因型、表现型、等位基因
△基因型是性状表现的内在因素,而表现型则是基因型的表现形式。
表现型=基因型+环境条件。
五、小结
后代性状分离比
说明
3:
1
杂合子X杂合子
1:
1
杂合子X隐性纯合子
1:
0
纯合子X纯合子;纯合子X显性杂合子
1.
2.
n对基因杂交
F1形成配子数
F1配子可能的结合数
F2的基因型数
F2的表现型数
F2的表型分离比
1
2
……
2
4
……
4
16
……
3
9
……
2
4
……
3:
1
9:
3:
3:
1
……
2n
2n
4n
3n
2n
(3+1)n
第二章基因与染色体的关系
体现在
考纲要求:
理解细胞的减数分裂和配子形成过程以及受精作用,理解伴性遗传并能独立操作观察细胞有丝分裂实验
依据:
基因与染色体行为的平行关系减数分裂与受精作用
基因在染色体上证据:
果蝇杂交(白眼)伴性遗传:
色盲与抗VD佝偻病
现代解释:
遗传因子为一对同源染色体上的一对等位基因
一、减数分裂
1.进行有性生殖的生物在产生成熟生殖细胞时,进行的染色体数目减半的细胞分裂。
在减数分裂过程中,染色体只复制一次,而细胞分裂两次。
减数分裂的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。
2.过程
精子形成过程:
(形成部位:
睾丸)
染色体同源染色体联会成着丝点分裂
精原复制初级四分体(交叉互换)次级单体分开精变形精
细胞精母分离(自由组合)精母细胞子
染色体2N2NN2NNN
DNA2C4C4C2C2CCC
注:
①减数分裂过程中,有关纺锺体的形成,核膜、核仁的解体与重建情况与一般的有丝分裂相同。
②教材中关于细胞图示中,侧重于染色体行为的变化,没有区分染色体与染色质两种形态。
③要注意联会与形成四分体均发生在前期,此时染色体已复制。
3.同源染色体
AaBb①形状(着丝点位置)和大小(长度)相同,分别来自父方与母方的
②一对同源染色体是一个四分体,含有两条染色体,四条染色单体
③区别:
同源与非同源染色体;姐妹与非姐妹染色单体
④交叉互换
4.判断分裂图象
奇数减Ⅱ或生殖细胞散乱中央分极
染色体不有丝
有配对前中后
偶数同源染色体有减Ⅰ期期期
无减Ⅱ
二、萨顿假说
1.内容:
基因在染色体上(染色体是基因的载体)
2.依据:
基因与染色体行为存在着明显的平行关系。
①在杂交中保持完整和独立性②成对存在
③一个来自父方,一个来自母方④形成配子时自由组合
3.证据:
果蝇的限性遗传
红眼XWXWX白眼XwY
XWY红眼XWXw
红眼XWXW:
红眼XWXw:
红眼XWY:
白眼XwY
①一条染色体上有许多个基因;②基因在染色体上呈线性排列。
4.现代解释孟德尔遗传定律
①分离定律:
等位基因随同源染色体的分开独立地遗传给后代。
②自由组合定律:
非同源染色体上的非等位基因自由组合。
三、伴性遗传的特点与判断
1.伴性遗传的概念
2.人类红绿色盲症(伴X染色体隐性遗传病)
特点:
⑴男性患者多于女性患者。
⑵交叉遗传。
即男性→女性→男性。
⑶一般为隔代遗传。
1.抗维生素D佝偻病(伴X染色体显性遗传病)
特点:
⑴女性患者多于男性患者。
⑵代代相传。
4、伴性遗传在生产实践中的应用
口诀:
无中生有为隐性,隐性遗传看女病。
父子患病为伴性。
有中生无为显性,显性遗传看男病。
母女患病为伴性。
遗传病的遗传方式
遗传特点
实例
常染色体隐性遗传病
隔代遗传,患者为隐性纯合体
白化病、苯丙酮尿症、
常染色体显性遗传病
代代相传,正常人为隐性纯合体
多/并指、软骨发育不全
伴X染色体隐性遗传病
隔代遗传,交叉遗传,患者男性多于女性
色盲、血友病
伴X染色体显性遗传病
代代相传,交叉遗传,患者女性多于男性
抗VD佝偻病
伴Y染色体遗传病
传男不传女,只有男性患者没有女性患者
人类中的毛耳
四、遗传图的判断
第一步:
确定致病基因的显隐性:
可根据
(1)双亲正常子代有病为隐性遗传(即无中生有为隐性);
(2)双亲有病子代出现正常为显性遗传来判断(即有中生无为显性)。
第二步:
确定致病基因在常染色体还是性染色体上。
1在隐性遗传中,父亲正常女儿患病或母亲患病儿子正常,为常染色体上隐性遗传;
2在显性遗传,父亲患病女儿正常或母亲正常儿子患病,为常染色体显性遗传。
3不管显隐性遗传,如果父亲正常儿子患病或父亲患病儿子正常,都不可能是Y染色体上的遗传病;
4题目中已告知的遗传病或课本上讲过的某些遗传病,如白化病、多指、色盲或血友病等可直接确定。
注:
如果家系图中患者全为男性(女全正常),且具有世代连续性,应首先考虑伴Y遗传,无显隐之分。
性别决定的方式
类型
XY型
ZW型
性别
雌
雄
雌
雄
体细胞染色体组成
2A+XX
2A+XY
2A+ZW
2A+ZZ
性细胞染色体组成
A+X
A+X
A+Y
A+Z
A+W
A+Z
生物类型
人、哺乳类、果蝇及雌雄异株植物
鸟类、蛾蝶类
第三章基因的本质
考纲要求:
理解人类对遗传物质的探索过程以及DNA分子结构的主要特点,理解基因的概念和DNA分子的复制
第一节DNA是主要的遗传物质
1.肺炎双球菌的转化实验
(1)、体内转化实验:
1928年由英国科学家格里菲思等人进行。
①实验过程
结论:
在S型细菌中存在转化因子可以使R型细菌转化为S型细菌。
(2)、体外转化实验:
1944年由美国科学家艾弗里等人进行。
①实验过程
结论:
DNA是遗传物质
2.噬菌体侵染细菌的实验
1、实验过程
①标记噬菌体
含35S的培养基
含35S的细菌35S
蛋白质外壳含35S的噬菌体
含32P的培养基
含32P的细菌
内部DNA含32P的噬菌体
②噬菌体侵染细菌
含35S的噬菌体
细菌体内没有放射性35S
含32P的噬菌体
细菌体内有放射线32P
结论:
进一步确立DNA是遗传物质
3.烟草花叶病毒感染烟草实验:
(1)、实验过程
(2)、实验结果分析与结论
烟草花叶病毒的RNA能自我复制,控制生物的遗传性状,因此RNA是它的遗传物质。
4、生物的遗传物质
非细胞结构:
DNA或RNA
生物原核生物:
DNA
细胞结构
真核生物:
DNA
结论:
绝大多数生物(细胞结构的生物和DNA病毒)的遗传物质是DNA,所以说DNA是主要的遗传物质。
第二节DNA分子的结构
1.DNA分子的结构
(1)基本单位---脱氧核糖核苷酸(简称脱氧核苷酸)
2、DNA分子有何特点?
⑴稳定性
是指DNA分子双螺旋空间结构的相对稳定性。
与这种稳定性有关的因素主要有以下几点:
①DNA分子由两条脱氧核苷酸长链盘旋成精细均匀、螺距相等的规则双螺旋结构。
②DNA分子中脱氧核糖和磷酸交替排列的顺序稳定不变。
③DNA分子双螺旋结构中间为碱基对、碱基之间形成氢键,从而维持双螺旋结构的稳定。
④DNA分子之间对应碱基严格按照碱基互补配对原则进行配对。
⑤每个特定的DNA分子中,碱基对的数量和排列顺序稳定不变。
⑵多样性
构成DNA分子的脱氧核苷酸虽只有4种,配对方式仅2种,但其数目却可以成千上万,更重要的是形成碱基对的排列顺序可以千变万化,从而决定了DNA分子的多样性。
⑶特异性
每个特定的DNA分子中具有特定的碱基排列顺序,而特定的排列顺序代表着遗传信息,所以每个特定的DNA分子中都贮存着特定的遗传信息,这种特定的碱基排列顺序就决定了DNA分子的特异性。
3.DNA双螺旋结构的特点:
⑴DNA分子由两条反向平行的脱氧核苷酸长链盘旋而成。
⑵DNA分子外侧是脱氧核糖和磷酸交替连接而成的基本骨架。
⑶DNA分子两条链的内侧的碱基按照碱基互补配对原则配对,并以氢键互相连接。
4.相关计算
(1)A=TC=G
(2)(A+C)/(T+G)=1或A+G/T+C=1
(3)如果(A1+C1)/(T1+G1)=b
那么(A2+C2)/(T2+G2)=1/b
(4)(A+T)/(C+G)=(A1+T1)/(C1+G1)
=(A2+T2)/(C2+G2)
=a
例:
已知DNA分子中,G和C之和占全部碱基的46%,又知在该DNA分子的H链中,A和C分别占碱基数的28%和22%,则该DNA分子与H链互补的链中,A和C分别占该链碱基的比例为()
A28%、22%B.22%、28% C.23%、27%D.26%、24%
4.判断核酸种类
(1)如有U无T,则此核酸为RNA;
(2)如有T且A=TC=G,则为双链DNA;
(3)如有T且A≠TC≠G,则为单链DNA;
(4)U和T都有,则处于转录阶段。
第3节DNA的复制
一、DNA半保留复制的实验证据
1、方法:
同位素标记及密度梯度离心法。
2、实验过程:
以含15NH4Cl的培养液来培养大肠杆菌,让大肠杆菌繁殖几代,再将大肠杆菌转移到14N的普通培养液中。
然后,在不同时刻收集大肠杆菌并提取DNA,进行密度梯度离心,记录不同质量的DNA在离心管中的位置及比例。
大肠杆菌
在离心管中的位置比例
DNA分子
亲代
下层
15N15N
第1代
中层
15N14N
第2代
1中层:
1上层
中层15N14N上层14N14N
第3代
1中层:
3上层
中层15N14N上层14N14N
第4代
1中层:
7上层
中层15N14N上层14N14N
4、结论:
DNA分子复制为半保留复制。
二、、DNA分子复制的过程
1、概念:
以亲代DNA分子为模板合成子代DNA的过程
2、复制时间:
有丝分裂或减数第一次分裂间期
3.复制方式:
半保留复制
4、复制条件
(1)模板:
亲代DNA分子两条脱氧核苷酸链
(2)原料:
4种脱氧核苷酸
(3)能量:
ATP
(4)解旋酶、DNA聚合酶等
5、复制特点:
边解旋边复制
6、复制场所:
主要在细胞核中,线粒体和叶绿体也存在。
7、复制意义:
保持了遗传信息的连续性。
三、与DNA复制有关的碱基计算
1.一个DNA连续复制n次后,DNA分子总数为:
2n
2.第n代的DNA分子中,含原DNA母链的有2个,占1/(2n-1)
3.若某DNA分子中含碱基T为a,
(1)则连续复制n次,所需游离的胸腺嘧啶脱氧核苷酸数为:
a(2n-1)
(2)第n次复制时所需游离的胸腺嘧啶脱氧核苷酸数为:
a·2n-1
例题:
(1)、一个被放射性元素标记双链DNA的噬菌体侵染细菌,若此细菌破裂后释放出n个噬菌体,则其中具有放射性元素的噬菌体占总数()
A.1/nB.1/2nC.2/nD.1/2
(2)、具有100个碱基对的一个DNA分子片段,含有40个胸腺嘧啶,若连续复制3次,则第三次复制时需游离的胞嘧啶脱氧核苷酸数是()
A.60个B.120个C.240个D.360个
第4节基因是有遗传效应的DNA片段
一、.基因的相关关系
1、与DNA的关系
①基因的实质是有遗传效应的DNA片段,无遗传效应的DNA片段不能称之为基因(非基因)。
②每个DNA分子包含许多个基因。
2、与染色体的关系
①基因在染色体上呈线性排列。
②染色体是基因的主要载体,此外,线粒体和叶绿体中也有基因分布。
3、与脱氧核苷酸的关系
①脱氧核苷酸(A、T、C、G)是构成基因的单位。
②基因中脱氧核苷酸的排列顺序代表遗传信息。
4、与性状的关系
①基因是控制生物性状的遗传物质的结构和功能单位。
②基因对性状的控制通过控制蛋白质分子的合成来实现。
二、DNA片段中的遗传信息
遗传信息蕴藏在4种碱基的排列顺序之中;碱基排列顺序的千变万化构成了DNA分子的
多样性,而碱基的特异排列顺序,又构成了每个DNA分子的特异性。
第四章基因的表达
一、遗传信息的转录
1、DNA与RNA的异同点
核酸
项目
DNA
RNA
结构
通常是双螺旋结构,极少数病毒是单链结构
通常是单链结构
基本单位
脱氧核苷酸(4种)
核糖核苷酸(4种)
五碳糖
脱氧核糖
核糖
碱基
A、G、C、T
A、G、C、U
产生途径
DNA复制、逆转录
转录、RNA复制
存在部位
主要位于细胞核中染色体上,极少数位于细胞质中的线粒体和叶绿体上
主要位于细胞质中
功能
传递和表达遗传信息
①mRNA:
转录遗传信息,翻译的模板
②tRNA:
运输特定氨基酸
③rRNA:
核糖体的组成成分
2、RNA的类型
⑴信使RNA(mRNA)
⑵转运RNA(tRNA)
⑶核糖体RNA(rRNA)
3、转录
⑴转录的概念
⑵转录的场所 主要在细胞核
⑶转录的模板 以DNA的一条链为模板
⑷转录的原料 4种核糖核苷酸
⑸转录的产物 一条单链的mRNA
⑹转录的原则 碱基互补配对
⑺转录与复制的异同(下表:
)
阶段
项目
复制
转录
时间
细胞有丝分裂的间期或减数第一次分裂间期
生长发育的连续过程
进行场所
主要细胞核
主要细胞核
模板
以DNA的两条链为模板
以DNA的一条链为模板
原料
4种脱氧核苷酸
4种核糖核苷酸
条件
需要特定的酶和ATP
需要特定的酶和ATP
过程
在酶的作用下,两条扭成螺旋的双链解开,以解开的每段链为模板,按碱基互补配对原则(A—T、C—G、T—A、G—C)合成与模板互补的子链;子链与对应的母链盘绕成双螺旋结构
在细胞核中,以DNA解旋后的一条链为模板,按照A—U、G—C、T—A、C—G的碱基互补配对原则,形成mRNA,mRNA从细胞核进入细胞质中,与核糖体结合
产物
两个双链的DNA分子
一条单链的mRNA
特点
边解旋边复制;半保留式复制(每个子代DNA含一条母链和一条子链)
边解旋边转录;DNA双链分子全保留式转录(转录后DNA仍保留原来的双链结构)
遗传信息的传递方向
遗传信息从亲代DNA传给子代DNA分子
遗传信息由DNA传到RNA
二、遗传信息的翻译
1、遗传信息、密码子和反密码子
遗传信息
密码子
反密码子
概念
基因中脱氧核苷酸的排列顺序
mRNA中决定一个氨基酸的三个相邻碱基
tRNA中与mRNA密码子互补配对的三个碱基
作用
控制生物的遗传性状
直接决定蛋白质中的氨基酸序列
识别密码子,转运氨基酸
种类
基因中脱氧核苷酸种类、数目和排列顺序的不同,决定了遗传信息的多样性
64种
61种:
能翻译出氨基酸
3种:
终止密码子,不能翻译氨基酸
61种或tRNA也为61种
联系
①基因中脱氧核苷酸的序列
mRNA中核糖核苷酸的序列
②mRNA中碱基序列与基因模板链中碱基序列互补
③密码子与相应反密码子的序列互补配对
2、翻译
⑴定义
⑵翻译的场所细胞质的核糖体上
⑶翻译的模板mRNA
⑷翻译的原料20种氨基酸
⑸翻译的产物多肽链(蛋白质)
⑹翻译的原则碱基互补配对
⑺翻译与转录的异同点(下表):
阶段
项目
转录
翻译
定义
在细胞核中,以DNA的一条链为模板合成mRNA的过程
以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程
场所
细胞核
细胞质的核糖体
模板
DNA的一条链
信使RNA
信息传递的方向
DNA→mRNA
mRNA→蛋白质
原料
含A、U、C、G的4种核苷酸
合成蛋白质的20种氨基酸
产物
信使RNA
有一定氨基酸排列顺序的蛋白质
实质
是遗传信息的转录
是遗传信息的表达
三、基因表达过程中有关DNA、RNA、氨基酸的计算
1、转录时,以基因的一条链为模板,按照碱基互补配对原则,产生一条单链mRNA,则转录产生的mRNA分子中碱基数目是基因中碱基数目的一半,且基因模板链中A+T(或C+G)与mRNA分子中U+A(或C+G)相等。
2.翻译过程中,mRNA中每3个相邻碱基决定一个氨基酸,所以经翻译合成的蛋白质分子中氨基酸数目是mRNA中碱基数目的1/3,是双链DNA碱基数目的1/6。
中心法则
⑴DNA→DNA:
DNA的自我复制;⑵DNA→RNA:
转录;⑶RNA→蛋白质:
翻译;⑷RNA→RNA:
RNA的自我复制;⑸RNA→DNA:
逆转录。
DNA→DNARNA→RNA
DNA→RNA细胞