雷达系统建模与仿真报告模板doc.docx

上传人:b****3 文档编号:27513044 上传时间:2023-07-02 格式:DOCX 页数:47 大小:56.74KB
下载 相关 举报
雷达系统建模与仿真报告模板doc.docx_第1页
第1页 / 共47页
雷达系统建模与仿真报告模板doc.docx_第2页
第2页 / 共47页
雷达系统建模与仿真报告模板doc.docx_第3页
第3页 / 共47页
雷达系统建模与仿真报告模板doc.docx_第4页
第4页 / 共47页
雷达系统建模与仿真报告模板doc.docx_第5页
第5页 / 共47页
点击查看更多>>
下载资源
资源描述

雷达系统建模与仿真报告模板doc.docx

《雷达系统建模与仿真报告模板doc.docx》由会员分享,可在线阅读,更多相关《雷达系统建模与仿真报告模板doc.docx(47页珍藏版)》请在冰豆网上搜索。

雷达系统建模与仿真报告模板doc.docx

雷达系统建模与仿真报告模板doc

 

设计报告一十种随机数的产生

 

一概述.

 

概论论是在已知随机变量的情况下,研究随机变量的统计特性及其参量,而随机变量的仿真正好与此相反,是在已知随机变量的统计特性及其参数的情况下研究如何在计算机上产生服从给定统计特性和参数随机变量。

下面对雷达中常用的模型进行建模:

均匀分布

高斯分布

指数分布

广义指数分布

瑞利分布

广义瑞利分布

Swerling分布

t分布

对数一正态分布韦布尔分布

 

二随机分布模型的产生思想及建立.

 

产生随机数最常用的是在(0,1)区间内均匀分布的随机数,其他分布的随机

数可利用均匀分布随机数来产生。

 

均匀分布

1>(0,1)区间的均匀分布:

用混合同余法产生(0,1)之间均匀分布的随机数,伪随机数通常是利用递推

公式产生的,所用的混和同余法的递推公式为:

xn1=xn+C(Modm)

 

其中,C是非负整数。

通过适当选取参数C可以改善随机数的统计性质。

一般取作小于M的任意奇数正整数,最好使其与模M互素。

其他参数的选择

(1)的选取与计算机的字长有关。

(2)x

(1)

一般取为奇数。

用Matlab来实现,编程语言用Matlab语言,可以用hist数的直方图(即统计理论概率分布的一个样本的概率密度函数)

函数画出产生随机,直观地看出产

生随机数的有效程度。

其产生程序如下:

c=3;lamade=4*200+1;x

(1)=11;

M=2^36;

fori=2:

1:

10000;

x(i)=mod(lamade*x(i-1)+c,M);

end;

x=x./M;

hist(x,10);

mean(x)

var(x)

运行结果如下:

 

均值=方差=

 

2>(a,b)区间的均匀分布:

利用已产生的(0,1)均匀分布随机数的基础上采用变换法直接产生(a,b)

均匀分布的随机数。

其概率密度函数如下:

1

p(x)

ba

axb

0

xa,x

b

 

其产生程序如下:

c=3;lamade=4*201+1;a=6;b=10;

x

(1)=11;M=2^36;

fori=2:

1:

10000;

x(i)=mod(lamade*x(i-1)+c,M);

 

end;

x=x./M;

%%%%%%%%%%%%%%%%%%%%%

i=2:

1:

10000;

y(i)=(b-a)*x(i)+a;

n=5:

:

11;

hist(y,n),axis([a-1b+10max(hist(y,n))+20]);

mean(y)

var(y)

 

上面程序中取a=6,b=10.即(6,10)区间上的均匀分布。

运行结果如下:

 

均值=

方差=

高斯分布:

高斯分布的概率密度函数如下;

(xu)2

p(x)

1

2

e

2

2

其产生方法是在均匀分布随机数的基础上通过

函数变换法来产生。

产生步骤

是①产生均匀分布的随机数。

②产生服从标准正态分布的随机数。

③由标准正态

分布产生一般正态分布。

1>标准正态分布

其部分程序如下:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i=1:

1:

10000;

u(i)=sqrt(-2*log(x(i))).*cos(2.*pi.*y(i));

v(i)=sqrt(-2*log(x(i))).*sin(2.*pi.*y(i));

n1=-5:

:

5;

n2=-5:

:

5;

 

subplot(1,2,1);

hist(u,n1);

subplot(1,2,2);

hist(v,n2);

mean(u)

var(u)

mean(v)

var(v)

 

运行结果如下:

均值=方差=

 

2>一般正态分布

其部分程序如下:

a=2;b=2;

i=1:

1:

10000;

u(i)=sqrt(-2*log(x(i))).*cos(2.*pi.*y(i));

v=b*u+a;

n=-10:

:

10;

hist(v,n);

mean(v)

var(v)

 

运行结果如下:

 

均值=方差=

 

指数分布:

服从正态分布的信号通过线性检波器后其包络强度(功率)服从指数分布。

概率密度函数为:

 

p(x)exx0

 

其产生方法亦有:

①在均匀分布随机数的基础上产生指数分布。

②在正态分布随机数的基础上产生该分布。

产生程序分别如下:

程序1(部分)

lamade1=1

i=1:

1:

10000;

y(i)=-log(x(i))./lamade1;

n=0:

:

10;

hist(y,n);

mean(y)

var(y)

运行结果:

 

均值=方差=

程序2(部分)

i=1:

1:

10000;

s(i)=(u(i).*u(i)+v(i).*v(i));

n=0:

:

25;

hist(s,n);

mean(s)

ar(s)

运行结果:

 

瑞利分布:

 

在雷达系统中载带信号的包络服从瑞利分布。

正态随机过程在其杂波载频(f0)上可以表示为:

 

c(t)x(t)coscty(t)sinct

 

其中x(t)、y(t)是服从N(,

2)的相互独立的随机过程,检波器的包络幅度

(电压):

v(t)x(t)2

y(t)2

 

服从瑞利分布R()。

瑞利分布的概率密度函数为:

 

f(x)

x

exp(

x2

2),

x

0

2

2

0,

x

0

 

其产生方法亦有:

①在均匀分布随机数的基础上产生瑞利分布。

②在正态分布随机数的基础上产生该分布。

其产生程序如下:

程序1(部分):

segma=2;

i=1:

1:

10000;

y(i)=segma*sqrt(-2*log(x(i)));

n=0:

:

10;

hist(y,n);

mean(y)

var(y)

运行结果:

 

均值=方差=

 

程序2(部分):

i=1:

1:

10000;

s(i)=sqrt(u(i).*u(i)+v(i).*v(i));

n=0:

:

10;

hist(s,n);

mean(s)

 

var(s)

运行结果:

 

均值=方差=

 

广义指数分布

 

概率密度函数为:

p(x)e(xs)I0(2xs)

 

式中:

s-信噪比

部分程序如下:

s=8;

i=1:

1:

10000;

h(i)=u(i)+sqrt(2*s);

z(i)=h(i).*h(i)+y(i).^2;

n=0:

1:

60;

hist(z,n);

运行结果:

 

均值=

方差=

广义瑞利分布

x2

A2

I0(Ax2)

p(x)

x2e2

2

a

A

2

-信噪比

部分程序如下:

a=1;

i=2:

1:

10240;

s(i)=sqrt((u(i)+a).^2+v(i).^2);

n=-1:

:

15;

 

x0

 

x0

 

hist(s,n);

mean(s)

var(s)

运行结果如下:

 

均值=方差=

 

韦布尔分布

韦布尔分布模型的性能介于瑞利分布模型与对数一正态分布模型之间.海浪

杂波和地面杂波都可以用它来表示,并且在一个相当宽的条件范围内它能精确地

表示实际的杂波分布。

韦布尔分布的概率密度函数为:

 

a

a

xx0

a1xx0

e

b

p(x)

b

xx0

b

式中:

a-形状参数;

b-

比例参数;

x0-位置参数;

该分布是在服从瑞利分布随机数的基础上用变换法产生的,其产生源程序

(部分)及直方图如下:

a=3;b=2;m=5;

i=2:

1:

10000;

y(i)=m+b*(-log(x(i)).^(1/a));

y=m+b*((-log(x)).^(1/a));

hist(y,60);

mean(y)

var(y)

 

均值=方差=

 

对数-正态分布

 

对数一正态分布模型可以用来表示高分辨率雷达在观察角小于5时,观察到

 

的海浪杂波,在低观察角时观察到的地面杂波也可用对数一正态分布模型,这类

杂波通常是形状不规则的大反射体,例如远洋舰船,较大的空间飞行器,或者SAR

雷达观察到的城市等等。

其概率密度函数是:

1

ln(x/u)

p(x)

e2

2

2

x

eu2/2,

方差e2u

2

2

均值

(e

1)

其产生源程序及直方图如下:

i=1:

1:

10000;

u(i)=sqrt(-2*log(x(i))).*cos(2.*pi.*y(i));

%%%%%%%%%%%%%%%%%

a=;b=;

v=sqrt(b)*u+a;

%%%%%%%%%%%%%%%%%%

L=exp(v);

hist(L,100);

mean(L)

var(L)

 

均值=方差=

Swerling分布

 

雷达系统中两次回波幅度之差服从Swerling1型。

其概率密度函数为:

1e

x

x

0

p(x)

0

x

0

式中:

可表示雷达反射回波功率或截面积或信噪比。

产生源程序(部分)如下:

rp=10;

lamade1=1/rp;

 

i=1:

1:

10000;

y(i)=-log(x(i))./lamade1;

hist(y,100);

mean(y)

var(y)

其直方图如下:

 

均值=方差=

 

.t分布随机数

调用MATLAB函数trnd()产生服从t分布的随机数

 

均值=方差=

程序如下:

%产生满足t分布的随机数

clear;

clc;

y=trnd(2,1,2048);%自由度为2

hist(y,50);

mean=mean(y);

var=var(y);

 

设计报告二产生两种相关随机变量

 

一、根据课本123页,产生相关随机序列的步骤:

(1)对功率谱进行采样,得到序列。

(2)产生独立的区间均匀分布的随机相位矢量序列,其总体均匀功率谱等于1,即=1。

(3)然后,给每个随机相位矢量乘以比例系数,得。

(4)最后取逆离散傅立叶变换得到相关随机序列

1

二、两种相关随机序列

(1)功率谱密度为均匀分布随机变量:

 

程序如下:

clear

fs=512;%设频率为512

x=rand(1,fs);

b=7;

a=3;

z=(b-a)*x+a;

Sz=fft(z,fs);

N=length(Sz);

Pz=abs(Sz.^2)/N;

fs1=512;%设频率为512

x1=rand(1,fs);

c=2*pi;

d=0;

z=(c-d)*x1+d;

xn=sqrt(Pz).*z;

xk=ifft(xn,fs);

e=mean(xk);%均值

d=std(xk)^2;%方差

Pz1=abs(xk.^2)/N;

n=0:

:

100;

subplot(2,1,1);

plot((0:

511),xk);

axis([0,100,0,2]);

title('均匀分布功率谱采样产生的相关随机变量');

subplot(2,1,2);

plot((0:

511),10*log10(Pz1));

 

title('相关随机变量的功率谱');

 

(2)功率谱密度为正态分布随机变量:

 

程序如下:

clear

fs=512;%设频率为512

x=rand(1,fs);

y=rand(1,fs);

z=sqrt(-2*log10(x)).*cos(2*pi*y);

Sz=fft(z,fs);

N=length(Sz);

Pz=abs(Sz.^2)/N;

fs1=512;%设频率为512

x1=rand(1,fs1);%产生0-2pai的均匀随机变量

c=2*pi;

d=0;

z=(c-d)*x1+d;

xn=sqrt(Pz).*z;

xk=ifft(xn,fs1);

e=mean(xk);%均值

d=std(xk)^2;%方差

Pz1=abs(xk.^2)/N;

n=--256:

:

255;

subplot(2,1,1);

plot((-256:

255),xk);

axis([-256,255,,]);

title('正态分布功率谱采样产生的相关随机变量');

subplot(2,1,2);

plot((0:

511),10*log10(Pz1));

title('相关随机变量的功率谱')

 

设计报告三雷达系统仿真

一.概述:

从一般意义上讲,系统仿真可以理解为在对一个已经存在或尚不存在但正在开发的系统进行研究的过程中,为了了解系统的内在特性,设计构造即能反映系统特征又能符合系统实验要求的系统模型,并在该系统的模型上进行实验,以达到了解或设计系统的目的。

系统仿真本质上由三个要素构成,即系统,系统模型和实验。

系统是问题的本源,是分析问题的目的,实验是解决问题达到目的的手段,而系统模型则是连接系统和实验之间的桥梁。

 

二.任务要求及其各部分模型及仿真

仿真面向整个雷达系统,包含:

信号的混频、相干检波、脉冲压缩、MTI、相干积累、恒虚警等。

仿真雷达系统的原理框图如下:

 

回波

信号

1/4

距离R

地物

中放

相干

脉冲

固定

CFAR

杂波

检波

压缩

对消

系统

1/4

速度fd

噪声

 

图一、雷达系统仿真原理框图

 

此作业中从中放开始仿真,经过相干检波,然后在进行1/4抽取,之后在进

行脉冲压缩(频域),取模后进行固定对消,然后进行相参积累,最后进行恒虚

警处理。

(1)参数要求:

发射信号:

线性调频信号(17个周期):

脉宽100us带宽5MHz

 

周期1ms

回波:

目标回波:

杂波回波噪声

目标回波:

一个距离单元Rt=20Kmfd=250Hz

杂波回波:

四个距离单元Rc=25-25.12Km

噪声:

高斯白噪声

中放:

中频频率:

30MHz

带宽:

10MHz

采样频率:

40MHz

相干检波:

参考信号频率30MHzLPF6MHz

1/4

抽取

脉冲压缩:

频域实现

固定对消:

一次MTI

相参积累:

16

点FFT

CFAR:

选大单元平均

前16后16

(2)脉冲压缩信号的选取

 

线性调频信号是研究最多和应用最广范的脉冲压缩信号,它容易产生和

处理,多普勒频移容限大,可得到的脉压比范围大。

发射的线性调频信号

表示为:

si(t)Arect(t)cos(0t

t2

2

 

(3)产生回波信号:

回波信号=目标回波+杂波回波+噪声

①产生目标回波(程序如下):

fd=250;%多普勒频移

Rt=20*10^3;%目标距离(一个距离单元)

Delay_s=fix(2*Rt*fs/c);%目标回波延时点数

 

fori=1:

n

S_send(i,:

)=a.*exp(j*2*pi*((0+K*t/2).*t));

temp1(1,:

)=a.*exp(j*2*pi*((f01+K*t/2).*t+fd*i*T));

hbxh_s(i,Delay_s+1:

Num_T)=temp1(1,1:

Num_T-Delay_s);

 

hbxh_z(i,:

)=hbxh_z(1,:

);

end;

②产生杂波回波(程序如下):

Rc=25*10^3;%

Delay_c=fix(2*Rc*fs/c);%

Delay_c1=*10^(-6)*fs;

杂波距离(杂波延时

4个距离单元)

temp2(1,:

)=a.*exp(j*2*pi*((f01+K*t/2).*t));

temp3(1,Delay_c+1+(0)*Delay_c1:

Num_T)=temp2(1,1:

Num_T-Delay_c-(0)*Delay_c1);

temp3(2,Delay_c+1+

(1)*Delay_c1:

Num_T)=temp2(1,1:

Num_T-Delay_c-

(1)*Delay_c1);

temp3(3,Delay_c+1+

(2)*Delay_c1:

Num_T)=temp2(1,1:

Num_T-Delay_c-

(2)*Delay_c1);

temp3(4,Delay_c+1+(3)*Delay_c1:

Num_T)=temp2(1,1:

Num_T

-Delay_c-(3)*Delay_c1);hbxh_z(1,:

)=temp3(1,:

);

hbxh_z(1,:

)=hbxh_z(1,:

)+temp3(2,:

);

hbxh_z(1,:

)=hbxh_z(1,:

)+temp3(3,:

);

hbxh_z(1,:

)=hbxh_z(1,:

)+temp3(4,:

);

③产生高斯白噪声(程序如下):

hbxh_n=*randn(n,Num_T);

 

(4)中放:

中放模型为:

(相当于通过一个有增益的带通滤波器)

 

X(n)

KBPFY(n)

 

程序如下:

Mhz=1*10^6;

fsx=40*Mhz;

rfgain=5;%增溢

fcuts=[3*Mhz,5*Mhz,15*Mhz,17*Mhz];%带通滤波器f0=30MHzB=10MHz

mags=[0,1,0];

devs=[];

[m,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fsx);

hh=fir1(m,Wn,ftype,kaiser(m+1,beta),'noscale');

hh=rfgain*hh;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f_hh=fft(hh,5*length(hh));

figure(3),plot([0:

length(f_hh)-1]/length(f_hh),abs(f_hh));

 

title('带通滤波器的频域图')

fork=1:

n

y_zf_out(k,:

)=conv(hbxh(k,:

),hh);

end;

y_zf_out=y_zf_out(:

25:

40024);

figure(4);

subplot(211);plot(real(y_zf_out(1,:

)));

title('通过带通滤波器(中放)后的信号');subplot(212);plot(abs(fft(y_zf_out(1,:

))));

title('通过带通滤波器(中放)后的信号(频域)');

 

(5)相干检波:

输入信号与一个本地振荡信号进行乘法运算,然后通过低通滤波器,再进行1/4抽取。

其模型为:

低通滤波器抽取器I

IF

低通滤波器抽取器Q

 

时钟

NCO

 

源程序如下:

(部分)

nn=[0:

length(y_zf_out)-1];

forl=1:

n

i1(l,:

)=y_zf_out(l,:

).*cos(2.*pi.*f0.*nn*1/fs);

q1(l,:

)=y_zf_out(l,:

).*sin(2.*pi.*f0.*nn*1/fs);

end

f_i1=fft(i1(1,:

));

f_q1=fft(q1(1,:

));

figure(5),plot([0:

length(f_i1)-1/length(f_i1)],abs(f_i1)),

title('

低通滤波器之前的

i信号(频域)

');

figure(6),plot([0:

length(f_i1)-1/length(f_i1)],abs(f_q1)),

title('低通滤波器之前的q信号(频域)');

aa=[1100];

desired_faa=[06-16+120]*10^6;%MHz

faa=desired_faa/fs*2;%频率值

low_filter=remez(m,faa,aa);%n为阶数

figure(7),plot(low_filter),title('低通滤波器的时域图

f_filterl=fft(low_filter,512);

 

');

 

figure(8),plot([0:

511]/512,abs(f_filterl));title('低通滤波器

的频域图');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

forkk=1:

n

i2(kk,:

)=conv(i1(kk,:

),low_filter);

q2(kk,:

)=conv(q1(kk,:

),low_filter);

end

i2=i2(:

25:

40024);q2=q2(:

25:

40024);figure(9),subplot(2,1,1),plot(real(i2(1,:

))),title('

 

相干

检波后输出的

i路信号');

subplot(2,1,2),plot(real(q2(1,:

))),title('

相干检波后输出

的q路信号');

%

时域图

f_i2=fft(i2(1,:

));f_q2=fft(q2(1,:

));

figure(10),subplot(2,1,1),

p

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1