结构件间隙伸缩系统的建模与振动抑制.docx

上传人:b****3 文档编号:27444810 上传时间:2023-07-01 格式:DOCX 页数:32 大小:422.22KB
下载 相关 举报
结构件间隙伸缩系统的建模与振动抑制.docx_第1页
第1页 / 共32页
结构件间隙伸缩系统的建模与振动抑制.docx_第2页
第2页 / 共32页
结构件间隙伸缩系统的建模与振动抑制.docx_第3页
第3页 / 共32页
结构件间隙伸缩系统的建模与振动抑制.docx_第4页
第4页 / 共32页
结构件间隙伸缩系统的建模与振动抑制.docx_第5页
第5页 / 共32页
点击查看更多>>
下载资源
资源描述

结构件间隙伸缩系统的建模与振动抑制.docx

《结构件间隙伸缩系统的建模与振动抑制.docx》由会员分享,可在线阅读,更多相关《结构件间隙伸缩系统的建模与振动抑制.docx(32页珍藏版)》请在冰豆网上搜索。

结构件间隙伸缩系统的建模与振动抑制.docx

结构件间隙伸缩系统的建模与振动抑制

ModelingandVibrationSuppressionforTelescopicSystemsofStructuralMemberswithClearance

PROF.DR.DIETERARNOLD

DIPL.-ING.MARTINMITTWOLLENDIPL.-ING.FRANKSCHÖNUNG,

UNIVERSITÄTKARLSRUHE,INSTITUTFÜRFÖRDERTECHNIKUNDLOGISTIKSYSTEME)

PROF.DR.-ING.JÖRGWAUERDIPL.-ING.PIERREBARTHELS

UNIVERSITÄTKARLSRUHE,INSTITUTFÜRTECHNISCHEMECHANIK

Abstract

Telescopicsystemsofstructuralmemberswithclearancearefoundinmanyapplications,e.g.,mobilecranes,rackfeeders,forklifters,stackercranes(seeFigure1).Operatingthesemachines,undesirablevibrationsmayreducetheperformanceandincreasesafetyproblems.Therefore,thiscontributionhastheaimtoreducetheseharmfulvibrations.Forabetterunderstanding,thedynamicbehaviouroftheseconstructionsisanalysed.Themaininterestistheoverlappingareaofeachtwosectionsoftheabovedescribedsystems(seemarkingsinFigure1)whichisinvestigatedbymeasurementsandbycomputations.Atestrigisconstructedtodeterminethedynamicbehaviourbymeasuringfundamentalvibrationsandhigherfrequentoscillations,dampingcoefficients,specialappearancesandmore.Foranappropriatephysicalmodel,thegoverningboundaryvalueproblemisderivedbyapplyingHamilton’sprincipleandaclassicaldiscretisationprocedureisusedtogenerateacoupledsystemofnonlinearordinarydifferentialequationsasthecorrespondingtruncatedmathematicalmodel.Onthebasisofthismodel,acontrollerconceptforpreventingharmfulvibrationsisdeveloped.

Fig.1:

Graduatedmulti-sectionsystemswithclearance

 

1.Introduction

Graduatedmulti-sectionsystemsofstructuralcomponentsextendingandretractinginsideeachotherareinterestingtechnicalsystems.Theyarefound,e.g.,inmobilecranes,rackfeeders,forklifters,stackercranes(seeFigure1).Asthemaindutyofthesemachinesisnotdrivingaroundbutloadingandunloadinggoodstoandfromracks,trucksetc.,agreatnumberofaccelerationanddecelerationoperationsoccur.Combinedwiththeextendingandretractingmotionofthesections,bendingvibrationsofthesystemperpendiculartothetelescopicaxisoccur.Thesevibrationsleadtoasignificantreductionoftheperformanceduetotherequiredwaitingtimeforrelaxationandtosafetyproblemssothatcontrolledvibrationsuppressionseemstobenecessary.

Theobjectiveofthepresentpaperistodevelopacontrollerconceptforpreventingharmfulvibrations.First,asystemwithoutclearanceandwithafixedtelescopiclengthwhichcanbecharacterizedbyatime-invariantsystemoflineardifferentialequations,isreducedtoitsdominatingmodes.Usingthisreducedmodel,aconceptofstatecontrolviapoleplacementisdesignedwhichexhibitsthedesiredeffects.Introducingaso-calledLuenbergerobserver,straightforwardmeasurementsofthemotionofthetelescopebaseandofthecontrolvariableoftheactuatoraresufficienttooperatethecontroller.Forrealtelescopicoperationsanadaptivecontrollerandobserverareintroduced.Thecontroller,developedforthereducedlinearsystemmodel,isappliedtothesignificantlymorecomplicatedsystemwithclearanceforstudyingtheinfluenceofclearanceonthevibrationsuppressionduringtelescopicmotions.

2.TestRig

AsseeninFigure1,theappearanceofgraduatedtelescopicmulti-sectionsystemswithclearancecanbeverydifferent.Neverthelessthemainproblemcanbeconcentratedtotheoverlappingareaofeachtwosections(seemarkingsinFigure1).Onlytheorientationinspaceisdifferentasshowninthefunctionalsketchofthesystem(Figure2).Thissketchleadsontheonehandtoanappropriatetestrigandontheotherhandtoanappropriatephysicalmodel.

Maininterest:

overlappingareaoftwosections.Difference:

orientationinspace.

Fig.2:

Sketchofthemainitem–theoverlappingarea

 

Thetestrig,asshowninFigure3consistsoftwosections,madeofslendersteel-beams.Thelowersectionisfixedtoarigidblockontheground;theuppersectionisconnectedtothelowersectionwithscrews.Forchoosinganassemblywithoutclearanceorwithawelldefinedclearance,aspecialsystemofslidingboltsandbushesisusedtoreducefrictiontoaminimumandtoenablefreetranslationandrotationmovement.Thistestrigismadeofelementswithaverysimplegeometry,becausetheelasticpropertiesoftheseelementsarewellknownandthemeasurementresultsarecomprehensible.

acc.tipofuppersectiontestrigwithmostsimplygeometryfor:

Stimul

stimulation

acc.tipoflowersection

€analysingdynamicbehaviour

€analysingcontrollerbehaviour

overlappingareawith/withoutclearance

Fig.3:

Testrig

Inthefollowing,twotypicalassembliesareshownintwomovies.Movie1showsthedynamicbehaviourofatwo-sectionalgraduatedsystemwithoutclearance.Ontheleftside,youcanseethewholetestrig,intheupperwindow,theoverlappingareacanbeseenandinthelowerwindow,thedevelopmentofthevibrationscanbeobserved,presentedbytheaccelerationsignalsofthesectionstips.Themovieisshowninslow-motion;thefundamentalfrequencyis0.53Hz.Asexpected,thevibrationdevelopmentisabsolutelyharmonic.

Mov.1:

Systemwithoutclearance

Movie2showsthedynamicbehaviourofatwo-sectionalgraduatedsystemwithclearance(2mm).Ontheleftside,youcanseethewholetestrig,intheupperwindow,theoverlappingareacanbeseenandinthelowerwindow,thedevelopmentofthevibrationscanbeobserved,presentedbytheaccelerationsignalsofthesectionstips.Themovieisshowninslow-motion;thefundamentalfrequencyis0.53Hz.Asexpected,thevibration-developmentisnotlongerharmonic.Onlythecharacteristicvibrationofupperandlowersectionisinphasebalance.Eachtimethelowerendoftheuppersectionhitsthelowersection,highfrequentvibrations(e.g.6.35Hz)arestimulatedduetotheimpact.AsseeninMovie2,theaccelerationsignalofthehighfrequentvibrationsshowsanantiphasedevelopment.

Mov.2:

Systemwithclearance

3.PhysicalModell

Fromtheviewpointofmechanics,anon-linearmulti-fieldproblemofvibratingstructuralmemberswithvariablegeometryhastobeconsidered.Materialsurfaceareasofparticularcomponentsmovealongsurfaceareasofothercomponentsanddefinecomplicatedboundaryandtransitionconditions.Theclearanceproducesnon-lineareffects.InmanyapplicationsthedifferentsegmentsareslenderandcanbemodelledasBernoulli/Eulerbeamsmountedonarigidvehicleunitandcarryingatsomelocation,e.g.,attheendofthelastsection,aloadunitassumedtoberigid.Thevehicleunittogetherwiththefirstdeformablesegmentandalltheothersegments(oneofthemtogetherwiththeload)performtransversemotionsandtheextendingorretractingmotionofthesectionsissupplemented.Thecontactregionsbetweentwosectionsaremodelledasdiscretepointcontacts.Aspecialfeatureofthemodellingistointroducethereactionforcesatthecontactpointsintheformofdistributedlineloads(byusingDiracimpulsefunctions),sothatforthecontactingsectionselementaryboundaryconditionsremain.Thecontactformulationitselftakesplaceviaone-sidedspring-damperelements.

TheprocedureisillustratedinFig.4aforatwo-sectiontelescopicbeamsystemmountedonarigidtraverse,performingatranslationalmotionaccompaniedbyanextendingmotionofthetwobeamsegmentswithdefinedclearancebetweenthem.Beam1isfixedatarigidvehicleunit;beam2carriesapointloadatitsend.ThevehicleisdrivenbyahorizontalforceFasexcitation.Thedeformationofthebeams(includingvehiclemassandload)isrepresentedbytheabsolute

displacements

w(x1,t)

andv(x2,t).Themodelisdefinedbythefollowingparameters:

beam

lengthsl1,2,constantcross-sectionalareasA1,2,constantcross-sectionalmomentsofinertiaI1,2,

densityρandYoung’smodulusEofthetwoflexiblecomponents,massesofloadandvehicle

mLand

mT,respectively,andtelescopiclength

lA(t).Thecontactbetweenthebeamsis

realised(seeFigure4b)viadiscretespring-dampersystemsintheformofaso-calleddisplacement

condition(notaforcecondition)[3],thegivennumbernofcontactpoints,theclearance

lS,

springstiffnessc,anddampingcoefficientd.ccanbeestimatedfromthegeometryandthematerialofthecontactpartnerswhereastheestimationofdismorecomplicated.Asthepurposeofthemodelisthecreationofacontrolconceptforvibrationsuppression,itisimportantthattheequationsofmotionstayassimpleaspossible.Inthecontrolledsystemtheclearanceplaystheroleofanexternaldisturbanceandasthecontrollerhastoworkforeverykindofcontact,averyaccurateestimationofdisnotnecessary.Intheaxialdirectionitisassumedthatthereisnofriction.Thisassumptionisjustifiableasthebearingbetweenthedifferentsegmentsisrealisedasrollerbearinginmanyapplications.Itisassumedherethattheforceflowleadsfromtheupperpartintothelowerpart.

body1

body2

spring-dampersystemc,d

Fig.4:

a)Systemmodelb)Contactformulation

 

4.Formulation

Boundaryvalueproblem

ApplyingHamilton’sprinciple

tt

1

δ⎰t(T-U)dt+⎰Wdt=0,

1

tvirt

(2.1)

00

thegoverningboundaryvalueproblemcanbederived.Tisthekineticenergy,UthepotentialenergyandWvirtthevirtualworkofforceswithoutpotentialoftheconsideredsystem.Thekineticenergyreads

 

1l1*2

1l2

*2,

2020

T=⎰ρA1wtdx1+⎰ρA2vtdx2

(2.2)

 

*

where

ρA1

=ρA1+mTδ(x1)

and

ρA*=ρA+mδ(x-l)

andthesymbol

δ(.)

22L22

representsDirac’sdelt

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1