初中数学二次函数应用题专题训练.docx
《初中数学二次函数应用题专题训练.docx》由会员分享,可在线阅读,更多相关《初中数学二次函数应用题专题训练.docx(14页珍藏版)》请在冰豆网上搜索。
初中数学二次函数应用题专题训练
二次函数应用题专题训练
1.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:
当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.
(1)当每吨售价为240元时,计算此时的月销售量;
(2)求y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利
润,售价应定为每吨多少元?
(4)小静说:
“当月利润最大时,月销售额也最大
.”你认为对吗?
请说明理由.
2.(2010恩施)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇
远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克
香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香
菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每
天有6千克的香菇损坏不能出售.
(1)若存放
天后,将这批香菇一次性出售,设这批香菇的销售总金额为
元,试写出
与
之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?
(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?
最大利润是多少?
3.(2010德州)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:
若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)若市政府投资140万元,最多能购买多少个太阳能路灯?
4(2010河北)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=
x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳
x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y =元/件,w内 =元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?
若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
5.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).
⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
⑵求y与x之间的函数关系式;
⑶当
面包单价定为多少时,该零售店每天销售这种面包
获得的利润最大?
最大利润为多少?
6.(2010贵阳)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示.
(1)每天的销售数量m(件)与每件的销售价格x(元)
的函数表达式是.(3分)
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;(4分)
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?
(3分)
7.(2010荆州)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价
(万元)之间满足关系式
,月产量x(套)与生产总成本
(万元)存在如图所示的函数关系.
(1)直接写出
与x之间的函数关系式;
(2)求月产量x的范围;
(3)当月产量x(套)为多少时,
这种设备的利润W(万元)最大?
最大利润是多少?
8.(2010青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
9、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:
这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?
最高利润是多少?
10、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨
元(
为正整数),每个月的销售利润为
元.
(1)求
与
的函数关系式并直接写出自变量
的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?
最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?
根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
11.(20XX年重庆市江津区)某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为
,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?
并求最大利润为多少?
12、(20XX年茂名市)茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
出厂价
成本价
排污处理费
甲种塑料
2100(元/吨)
800(元/吨)
200(元/吨)
乙种塑料
2400(元/吨)
1100(元/吨)
100(元/吨)
每月还需支付设备管理、
维护费20000元
(1)设该车间每月生产甲、乙两种塑料各
吨,利润分别为
元和
元,分别求
和
与
的函数关系式(注:
利润=总收入-总支出);(6分)
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?
最大利润是多少?
(4分)
13.(20XX年黄石市)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数
(台)与补贴款额
(元)之间大致满足如图①所示的一次函数关系.随着补贴款额
的不断增大,销售量也不断增加,但每台彩电的收益
(元)会相应降低且
与
之间也大致满足如图②所示的一次函数关系.
(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?
(2)在政府补贴政策实施后,分别求出该商场销售彩电台数
和每台家电的收益
与政府补贴款额
之间的函数关系式;
(3)要使该商场销售彩电的总收益
(元)最大,政府应将每台补贴款额
定为多少?
并求出总收益
的最大值.
14.宏志中学九年级300名同学毕业前夕给灾区90名同学捐赠了一批学习用品(书包和文具盒),由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每个同学都只参加一件学习用品的购买),书包和文具盒的单价分别是54元和12元.
(1)若有x名同学参加购买书包,试求出购买学习用品的总件数y与x之间的函数关系式(不要求写出自变量的取值范围);
(2)若捐赠学习用品总金额超过了2300元,且灾区90名同学每人至少得到了一件学习用品,请问同学们如何安排购买书包和文具盒的人数?
此时选择其中哪种方案,使购买学习用品的总件数最多?
15.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)
(1)求y与x的函数关系式;
(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?
此时日净收入为多少?
16.已知某种水果的批发单价与批发量的函数关系如图
(1)所示.
(1)请说明图中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图
(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
17.丹东市“建设社会主义新农村”工作组到东港市大棚蔬菜生产基地指导菜农修建大棚种植蔬菜。
通过调查得知:
平均
修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌装置,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需要种子、化肥、农药等开支0.3万元。
每公顷蔬菜平均可卖7.5万元。
(1)基地的菜农共修建大棚x(公顷),当年收益(扣除修建和种植成本后)为y(万元),写出y关于x的函数关系式。
(2)若某菜农期望通过种植大棚蔬菜当年获利5万元收益,工作组应建议他修建多少公顷大棚?
(用分数表示即可)
(3)除种子、化肥、农药投资只能当年收益外,其他设施3年内不需增加投资仍可继续使用。
如果按三年计算,是否大棚面积越大收益越大?
修建面积为多少是可以获得最大利润?
请帮工作组为基地修建大棚提一
条合理化建议。
18.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x
1
2
3
4
价格y(元/千克)
2
2.2
2.4
2.6
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-
x2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?
且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:
372=1369,382=1444,392=1521,402=1600,412=1681)
19.如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米。
学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图)。
其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上。
现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元。
(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小?
最小值为多少?
20.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价
(元)与销售月份
(月)满足关系式
,而其每千克成本
(元)与销售月份
(月)满足的函数关系如图所示.
(1)试确定
的值;
(2)求出这种水产品每千克的利润
(元)与销售月份
(月)之间的函数关系式;
(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?
最大利润是多少?
21.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
时间t(天)
1
3
5
10
36
.......
日销售量m(件)
94
90
86
76
24
.......
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为
(
且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为
(
且t为整数)。
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程。
公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围。