第2节.ppt

上传人:b****2 文档编号:2672816 上传时间:2022-11-06 格式:PPT 页数:23 大小:422.50KB
下载 相关 举报
第2节.ppt_第1页
第1页 / 共23页
第2节.ppt_第2页
第2页 / 共23页
第2节.ppt_第3页
第3页 / 共23页
第2节.ppt_第4页
第4页 / 共23页
第2节.ppt_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

第2节.ppt

《第2节.ppt》由会员分享,可在线阅读,更多相关《第2节.ppt(23页珍藏版)》请在冰豆网上搜索。

第2节.ppt

第二节第二节电子崩电子崩电子崩(electronavalanche)的形成过程碰撞电离和电子崩引起的电流碰撞电离系数l气体放电的现象与发展规律与气体放电的现象与发展规律与气体种类气体种类、气压大小气压大小、气隙中的、气隙中的电场型式电场型式、电源容量电源容量等一系列因素有关。

等一系列因素有关。

l但无论何种气体放电都一定有一个电子但无论何种气体放电都一定有一个电子碰撞电离导致电子崩的阶段,它在所加电碰撞电离导致电子崩的阶段,它在所加电压达到一定数值时出现。

压达到一定数值时出现。

l各种高能辐射线(外界电离因子)引起:

各种高能辐射线(外界电离因子)引起:

l阴极表面光电离阴极表面光电离l气体中的空间光电离气体中的空间光电离l因此:

空气中存在一定浓度的带电离子因此:

空气中存在一定浓度的带电离子l解释气体放电机制的最早理论。

由英国物理解释气体放电机制的最早理论。

由英国物理学家学家J.S.E.汤森于汤森于1903年提出。

年提出。

l汤森在实验中发现,当两平板电极之间所加汤森在实验中发现,当两平板电极之间所加电压增大到一定值时,极板间隙的气体中出电压增大到一定值时,极板间隙的气体中出现连接两个电极的放电通道,使原来绝缘的现连接两个电极的放电通道,使原来绝缘的气体变成电导很高的气体,有放电电流通过,气体变成电导很高的气体,有放电电流通过,间隙被击穿。

汤森用气体电离的概念解释这间隙被击穿。

汤森用气体电离的概念解释这一现象。

一现象。

l汤森理论只适用于气压比较低、气压与极距汤森理论只适用于气压比较低、气压与极距的乘积的乘积(Pn)比较小的情况。

比较小的情况。

图图1-31-3表示实验所得平板表示实验所得平板电极电极(均匀电场均匀电场)气体中气体中的电流的电流II与所加电压的关与所加电压的关系:

即伏安特性系:

即伏安特性。

在曲线段,随的提高而增大,这是由于电极空间的带电粒子向电极运动加速而导致复合数的减少所致。

当电压接近时,电流趋向于饱和值,因为这时外界电离因子所产生的带电粒子几乎能全部抵达电极,所以电流值仅取决于电离因子的强弱而与所加电压无关。

当电压提高到时,电流又开始随电压的升高而增大,这是由于气隙中出现碰撞电离和电子崩。

一电子崩的形成外界电离因子在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多电子。

依此,电子将按照几何级数不断增多,类似雪崩似地发展,这种急剧增大的空间电子流被称为电子崩。

二二电子崩形成的电流电子崩形成的电流电子碰撞电离系数。

表示一个电子沿电场方向运动1cm的行程所完成的碰撞电离次数平均值。

如图1-5为平板电极气隙,板内电场均匀,设外界电离因子每秒钟使阴极表面发射出来的初始电子数为n0。

由于碰撞电离和电子崩的结果,在它们到达x处时,电子数已增加为n,这n个电子在dx的距离中又会产生dn个新电子。

根据碰撞电离系数的定义,可得:

分离变量并积分之,可得:

对于均匀电场来说,气隙中各点的电场强度相同,值不随x而变化,所以上式可写成:

抵达阳极的电子数应为:

(1-7)途中新增加的电子数或正离子数应为:

(1-8)将式(1-7)的等号两侧乘以电子的电荷,即得电流关系式:

(1-9)式(1-9)中,式(1-9)表明:

虽然电子崩电流按指数规律随极间距离d而增大,但这时放电还不能自持,因为一旦除去外界电离因子(令),即变为零。

三碰撞电离系数设电子平均自由行程为,电子运动1cm距离内将与气体分子发生次碰撞。

只有电子积累的动能大于分子电离能时,才产生电离,此时分子至少运动的距离为:

由第一节公式,实际自由行程长度等于或大于xi的概率为,所以也就是碰撞电离的概率。

根据碰撞电离系数的定义,即可得出:

(1-10)由第一节公式内容可知,电子的平均自由长度与气温成正比、与气压成反比,即:

当气温不变时,式(1-10)即可改写为:

式中A、B是两个与气体种类有关的常数。

(1-11)由上式不难看出:

电场强度E增大时,急剧增大;很大或很小时,都比较小。

所以,在高气压和高真空下,气隙不易发生放电现象,具有较高的电气强度。

高气压时,很小,单位长度上的碰撞次数很多,但能引起电离的概率很小;低气压和真空时,很大,总的碰撞次数少,所以也比较小。

小结所有气体放电都有一个电子碰撞电离导致电子崩的阶段;电子崩将产生急剧增大的空间电子流;在高气压和高真空的条件下,气隙都不易发生放电现象。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1