智能优化算法程序代码集锦.docx
《智能优化算法程序代码集锦.docx》由会员分享,可在线阅读,更多相关《智能优化算法程序代码集锦.docx(114页珍藏版)》请在冰豆网上搜索。
智能优化算法程序代码集锦
人工蚂蚁算法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function[x,y,minvalue]=AA(func)
%Example[x,y,minvalue]=AA('Foxhole')
clc;
tic;
subplot(2,2,1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%plot1
draw(func);
title([func,'Function']);
%初始化各参数
Ant=100;%蚂蚁规模
ECHO=200;%迭代次数
step=0.01*rand
(1);%局部搜索时的步长
temp=[0,0];
%各子区间长度
start1=-100;
end1=100;
start2=-100;
end2=100;
Len1=(end1-start1)/Ant;
Len2=(end2-start2)/Ant;
%P=0.2;
%初始化蚂蚁位置
fori=1:
Ant
X(i,1)=(start1+(end1-start1)*rand
(1));
X(i,2)=(start2+(end2-start2)*rand
(1));
%func=AA_Foxhole_Func(X(i,1),X(i,2));
val=feval(func,[X(i,1),X(i,2)]);
T0(i)=exp(-val);%初始信息素,随函数值大,信息素浓度小,反之亦然%%%%%*********************************************************************
end;
%至此初始化完成
forEcho=1:
ECHO%开始寻优
%P0函数定义,P0为全局转移选择因子
a1=0.9;
b1=(1/ECHO)*2*log(1/2);
f1=a1*exp(b1*Echo);
a2=0.225;
b2=(1/ECHO)*2*log
(2);
f2=a2*exp(b2*Echo);
ifEcho<=(ECHO/2)
P0=f1;
else
P0=f2;
end;
%P函数定义,P为信息素蒸发系数
a3=0.1;
b3=(1/ECHO).*log(9);
P=a3*exp(b3*Echo);
lamda=0.10+(0.14-0.1)*rand
(1);%全局转移步长参数
Wmax=1.0+(1.4-1.0)*rand
(1);%步长更新参数上限
Wmin=0.2+(0.8-0.2)*rand
(1);%步长更新参数下限
%寻找初始最优值
T_Best=T0
(1);
forj=1:
Ant
ifT0(j)>=T_Best
T_Best=T0(j);
BestIndex=j;
end;
end;
W=Wmax-(Wmax-Wmin)*(Echo/ECHO);%局部搜索步长更新参数
forj_g=1:
Ant%全局转移概率求取,当该蚂蚁随在位置不是bestindex时
ifj_g~=BestIndex
r=T0(BestIndex)-T0(j_g);
Prob(j_g)=exp(r)/exp(T0(BestIndex));
else%当j_g=BestIndex的时候进行局部搜索
ifrand
(1)<0.5
temp(1,1)=X(BestIndex,1)+W*step;
temp(1,2)=X(BestIndex,2)+W*step;
else
temp(1,1)=X(BestIndex,1)-W*step;
temp(1,2)=X(BestIndex,2)-W*step;
end;
Prob(j_g)=0;%bestindex的蚂蚁不进行全局转移
end;
X1_T=temp(1,1);
X2_T=temp(1,2);
X1_B=X(BestIndex,1);
X2_B=X(BestIndex,2);
%func1=AA_Foxhole_Func(X1_T,X2_T);%%%%%%%%%%%***************************************************
%F1_T=func1;
F1_T=feval(func,[X(i,1),X(i,2)]);
F1_B=feval(func,[X1_B,X2_B]);
%F1_T=(X1_T-1).^2+(X2_T-2.2).^2+1;
%func2=AA_Foxhole_Func(X1_B,X2_B);%%%%%%%%%%%%%***************************************************
%F1_B=func2;
%F1_B=(X1_B-1).^2+(X2_B-2.2).^2+1;
ifexp(-F1_T)>exp(-F1_B)
X(BestIndex,1)=temp(1,1);
X(BestIndex,2)=temp(1,2);
end;
end;
forj_g_tr=1:
Ant
ifProb(j_g_tr)X(j_g_tr,1)=X(j_g_tr,1)+lamda*(X(BestIndex,1)-X(j_g_tr,1));%Xi=Xi+lamda*(Xbest-Xi)
X(j_g_tr,2)=X(j_g_tr,2)+lamda*(X(BestIndex,2)-X(j_g_tr,2));%Xi=Xi+lamda*(Xbest-Xi)
X(j_g_tr,1)=bound(X(j_g_tr,1),start1,end1);
X(j_g_tr,2)=bound(X(j_g_tr,2),start2,end2);
else
X(j_g_tr,1)=X(j_g_tr,1)+((-1)+2*rand
(1))*Len1;%Xi=Xi+rand(-1,1)*Len1
X(j_g_tr,2)=X(j_g_tr,2)+((-1)+2*rand
(1))*Len2;%Xi=Xi+rand(-1,1)*Len2
X(j_g_tr,1)=bound(X(j_g_tr,1),start1,end1);
X(j_g_tr,2)=bound(X(j_g_tr,2),start2,end2);
end;
end;
%信息素更新
subplot(2,2,2);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Plot1
bar([X(BestIndex,1)X(BestIndex,2)],0.25);
%colormap(cool);
axis([03-4040]);
title({date;['Iteration',num2str(Echo)]});
xlabel(['Min_x=',num2str(X(BestIndex,1)),'','Min_y=',num2str(X(BestIndex,2))]);
fort_t=1:
Ant
%func=AA_Foxhole_Func(X(t_t,1),X(t_t,2));
val1=feval(func,[X(t_t,1),X(t_t,2)]);
T0(t_t)=(1-P)*T0(t_t)+(exp(-val1));%*************************************************************************
end;
[c_iter,i_iter]=max(T0);%求取每代全局最优解
minpoint_iter=[X(i_iter,1),X(i_iter,2)];
%func3=AA_Foxhole_Func(X(i_iter,1),X(i_iter,2));%%%%%%%%%***************************************************************************
val2=feval(func,[X(i_iter,1),X(i_iter,2)]);
minvalue_iter=val2;
%minvalue_iter=(X(i_iter,1)-1).^2+(X(i_iter,2)-2.2).^2+1;
min_local(Echo)=minvalue_iter;%保存每代局部最优解
subplot(2,2,3);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Plot2
plot(X(BestIndex,1),X(BestIndex,2),'rs','MarkerFaceColor','r','MarkerSize',8),gridon;
title(['GlobalMinValue=',num2str(minvalue_iter)]);
holdon;
plot(X(:
1),X(:
2),'g.'),pause(0.02);
holdoff;
axis([-100100-100100]);
gridon;
%将每代全局最优解存到min_global矩阵中
ifEcho>=2
ifmin_local(Echo)min_global(Echo)=min_local(Echo);
else
min_global(Echo)=min_global(Echo-1);
end;
else
min_global(Echo)=minvalue_iter;
end;
subplot(2,2,4);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Plot3
min_global=min_global';
index(:
1)=1:
ECHO;
plot(Echo,min_global(Echo),'y*')
%axis([0ECHO010]);
holdon;
title([func,'(X)=',num2str(minvalue_iter)],'Color','r');
xlabel('iteration');
ylabel('f(x)');
gridon;
end;%ECHO循环结束
[c_max,i_max]=max(T0);
minpoint=[X(i_max,1),X(i_max,2)];
%func3=AA_Foxhole_Func(X(i_max,1),X(i_max,2));%%%*************************************************************************
%minvalue=func3;
minvalue=feval(func,[X(i_max,1),X(i_max,2)]);
x=X(BestIndex,1);
y=X(BestIndex,2);
runtime=toc
人工免疫算法
function[x,y,fx,vfx,vmfit,P,vpm]=AI(func,gen,n,pm,per);
%Example[x,y,fx]=AI('Foxhole')
subplot(2,2,1);
draw(func);
title([func,'Function']);
ifnargin==1,
%gen=200;n=round(size(P,1)/2);pm=0.0005;per=0.0;fat=10;
%gen=250;n=size(P,1);pm=0.01;per=0.0;fat=.1;
P=cadeia(200,44,0,0,0);
gen=40;n=size(P,1);pm=0.2;per=0.0;fat=0.1;
end;
whilen<=0,
n=input('nhastobeatleastone.Typeanewvalueforn:
');
end;
xmin=-100;
xmax=100;
ymin=-100;
ymax=100;
x=decode(P(:
1:
22),xmin,xmax);y=decode(P(:
23:
end),ymin,ymax);
%fit=eval(f);
%fit=AI_Foxhole_Func(x,y);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fit=feval(func,[x'y']);
%imprime(1,vxp,vyp,vzp,x,y,fit,1,1);
%Hypermutationcontrollingparameters
pma=pm;itpm=gen;pmr=0.8;
%Generaldefintions
vpm=[];vfx=[];vmfit=[];valfx=1;
[N,L]=size(P);it=0;PRINT=1;
%Generations
whileit<=gen&valfx<=100,
x=decode(P(:
1:
22),xmin,xmax);y=decode(P(:
23:
end),ymin,ymax);T=[];cs=[];
%fit=eval(f);
%fit=AI_Foxhole_Func(x,y);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fit=feval(func,[x'y']);
[a,ind]=sort(fit);
valx=x(ind(end-n+1:
end));valy=y(ind(end-n+1:
end));
fx=a(end-n+1:
end);%nbestindividuals(maximization)
%Reproduction
[T,pcs]=reprod(n,fat,N,ind,P,T);
%Hypermutation
M=rand(size(T,1),L)<=pm;
T=T-2.*(T.*M)+M;
T(pcs,:
)=P(fliplr(ind(end-n+1:
end)),:
);
%NewRe-Selection(Multi-peaksolution)
x=decode(T(:
1:
22),xmin,xmax);y=decode(T(:
23:
end),ymin,ymax);
%fit=AI_Foxhole_Func(x,y);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fit=feval(func,[x'y']);
%fit=eval(f);
pcs=[0pcs];
fori=1:
n,
[out(i),bcs(i)]=min(fit(pcs(i)+1:
pcs(i+1)));%Mimimazionproblem%%%*************************
bcs(i)=bcs(i)+pcs(i);
end;
P(fliplr(ind(end-n+1:
end)),:
)=T(bcs,:
);
%Editing(Repertoireshift)
nedit=round(per*N);it=it+1;
P(ind(1:
nedit),:
)=cadeia(nedit,L,0,0,0);
pm=pmcont(pm,pma,pmr,it,itpm);valfx=min(fx);%*************************************************************
vpm=[vpmpm];vfx=[vfxvalfx];vmfit=[vmfitmean(fit)];
disp(sprintf('It.:
%dpm:
%.4fx:
%2.2fy:
%2.2fAv.:
%2.2ff(x,y):
%2.3f',it,pm,valx
(1),valy
(1),vmfit
(1),valfx));
subplot(2,2,2);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Plot1
bar([valx
(1)valy
(1)],0.25);
axis([03-4040]);
title(['Iteration',num2str(it)]);pause(0.1);
subplot(2,2,3);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Plot2
plot(valx
(1),valy
(1),'rs','MarkerFaceColor','r','MarkerSize',8)
holdon;
%plot(x(:
1),x(:
2),'k.');
set(gca,'Color','g')
holdoff;
gridon;
axis([-100100-100100]);
title(['GlobalMin=',num2str(valfx)]);
xlabel(['Min_x=',num2str(valx
(1)),'Min_y=',num2str(valy
(1))]);
subplot(2,2,4);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Plot3
plot(it,valfx,'k.')
axis([0gen010]);
holdon;
title([func,'(X)=',num2str(valfx)]);
xlabel('iteration');
ylabel('f(x)');
gridon;
end;%endwhile
%imprime(PRINT,vxp,vyp,vzp,x,y,fit,it,1);
x=valx
(1);y=valy
(1);fx=min(fx);%***********************************************************************
%x=P(ind(end),1:
22);y=P(ind(end),23:
44);fx=max(fx);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Plot4
%---------------------%
%INTERNALSUBFUNCTIONS
%---------------------%
%Print
function[]=imprime(PRINT,vx,vy,vz,x,y,fx,it,mit);
%x,fx->actualvalues
%vxplot,vplot->original(base)function
ifPRINT==1,
ifrem(it,mit)==0,
mesh(vx,vy,vz);holdon;axis([-100100-1001000500]);
xlabel('x');ylabel('y');zlabel('f(x,y)');
plot3(x,y,fx,'k*');drawnow;holdoff;
end;
end;
%Reproduction
function[T,pcs]=reprod(n,fat,N,ind,P,T);
%n->numberofclones
%fat->multiplyingfactor
%ind->bestindividuals
%T->temporarypopulation
%pcs->finalpositionofeachclone
ifn==1,
cs=N;
T=ones(N,1)*P(ind
(1),:
);
else,
fori=1:
n,
%cs(i)=round(fat*N/i);
cs(i)=round(fat*N);
pcs(i)=sum(cs);
T=[T;ones(cs(i),1)*P(ind(end-i+1),:
)];
end;
end;
%Controlofpm
function[pm]=pmcont(pm,pma,pmr,it,itpm);
%pma->initialvalue
%pmr->controlrate
%itpm->iterationsforrestoring
ifrem(it,itpm)==0,
pm=pm*pmr;
ifrem(it,10*itpm)==0,
pm=pma;