人教版数学七年级下册第八章教案.docx
《人教版数学七年级下册第八章教案.docx》由会员分享,可在线阅读,更多相关《人教版数学七年级下册第八章教案.docx(30页珍藏版)》请在冰豆网上搜索。
人教版数学七年级下册第八章教案
8.1二元一次方程组
德育目标:
学习《中学生日常行为规范》第24条:
生活节俭,不互相攀比,不乱花钱。
教学目标:
1.认识二元一次方程和二元一次方程组.
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.
教学重点:
理解二元一次方程组的解的意义.
教学难点:
求二元一次方程的正整数解.
学情分析:
七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:
指导探究,合作交流
教学过程:
一、问题导入
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,
某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?
思考:
这个问题中包含了哪些必须同时满足的条件?
设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.
这两个条件可以用方程x+y=10
2x+y=16表示.
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=10①
2x+y=16②
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.
二、探究新知:
满足方程①,且符合问题的实际意义的x、y的值有哪些?
把它们填入表中.为此我们用含x的式子表示y,即y=10-x(x可取一些自然数)
x
y
上表中哪对x、y的值还满足方程②
三、二元一次方程组的概念
显然,上表中每一对x、y的值都是方程①的解。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
如果不考虑方程的实际意义,那么x、y还可以取哪些值?
这些值是有限的吗?
还可以取x=-1,y=11;x=0.5,y=9.5,等等。
所以,二元一次方程的解有无数对。
上表中哪对x、y的值还满足方程②?
x=6,y=4还满足方程②.也就是说,它们是方程①与方程②的公共解,记作二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
四、典型例题:
例1若方程x2m–1+5y2–3n=7是二元一次方程.求m2+n的值。
分析:
由二元一次方程的概念你可以知道什么?
解:
依题意,得
2m–1=1,2–3n=1.
由2m–1=1,得m=1
由2–3n=1得n=1/3
∴m2+n=1+1/3=4/3.
五、课堂练习:
1、下列各对数值中是二元一次方程x+2y=2的解的是〔〕
A
B
C
D
2、教科书第89页练习和习题8.1第1、2题
六、课堂小结
1、二元一次方程、二元一次方程组的概念;
2、二元一次方程、二元一次方程组的解.
七、作业布置:
教科书第90页习题8.1第3、4题
板书设计
一、问题导入四、典型例题
思考例1例2 例3
二、探究新知五、课堂练习
三、二元一次方程组的概念六、课堂小结
教学反思:
8.2消元——解二元一次方程组
(一)
德育目标:
学习《中学生日常行为规范》第26条:
生活有规律,按时作息,珍惜时间,合理安排课余生活,坚持锻炼身体
教学目标:
1、掌握代入法解二元一次方程组;
2、经历探索二元一次方程组的解法的过程,初步体会“消元”的基本思想.
重点难点:
代入消元法解二元一次方程组是重点;
理解“消元”的基本思想是难点。
学情分析:
七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:
指导探究,合作交流
教学过程:
一、知识回顾
1、什么是二元一次方程及二元一次方程的解?
2、什么是二元一次方程组及二元一次方程组的解?
二、提出问题,创设情境
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?
在上述问题中,我们可以设出两个未知数,列出二元一次方程组.
这个问题能用一元一次方程解决吗?
三、讲授新课
1、那么怎样求解二元一次方程组呢?
上面的二元一次方程组和一元一次方程有什么关系?
2、提出问题:
从上面的学习中体会到代入法的基本思路是什么?
主要步骤有哪些呢?
归纳:
基本思路:
“消元”——把“二元”变为“一元”。
主要步骤是:
将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。
这种解方程组的方法称为代入消元法,简称代入法。
3、把下列方程写成用含x的式子表示y的形式:
(1)2x-y=3
(2)3x+y-1=0(3)5x-3y=x+y(4)-4x+y=-2
4、例题分析:
例1解方程组:
分析:
根据消元的思想,解方程组要把两个未知数转化为一个未知数,为此,需要用一个未知数表示另一个未知数。
怎样表示呢?
转化成的一元一次方程是什么?
解:
由①得x=y+3③
把③代入②,得3(y+3)-8y=14
解得y=-1
把y=-1代人③得x=2.
∴
归纳:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
解上面的方程组能消去y吗?
试试看例2
四、课堂练习:
教科书P93练习第1、2题
五、课堂小结
问题1、解方程组的基本思路是什么?
问题2、解方程组的方法是什么?
六、作业布置:
教科书P97习题8.2第2题
板书设计
一、知识回顾
二、提出问题,创设情境
三、讲授新课
提出问题→归纳:
基本思路→主要步骤→例题1
四、课堂练习
五、课堂小结
六、作业布置
教学反思:
8.2消元——解二元一次方程组
(二)
德育目标:
学习《中学生日常行为规范》第27条:
经常与父母交流生活、学习、思想等情况,尊重父母意见和教导。
教学目标:
初步学会用二元一次方程组解决简单的实际问题及有关的数学问题。
重点难点:
二元一次方程的运用是重点;用二元一次方程组解决简单的实际问题是难点。
学情分析:
七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:
指导探究,合作交流
教学过程:
一、复习导入
上节课我们学习了用代入消元法解二元一次方程组,回忆一下:
怎样用代入消元法解二元一次方程组?
什么是二元一次方程组的解?
今天我们学习用二元一次方程组解决有关的问题。
二、例题
例1已知
是方程组
的解,求
、
的值.
分析:
根据方程组的解的意义,我们可以知道什么?
①②
解:
把
代入
,得
把①代入②,得
8+2a-1=a+5解得a=-2
把a=-2代入①,得b=-5
∴
例2根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:
5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?
分析:
问题中有哪些未知量?
消毒液应该分装的大瓶数和小瓶数。
问题中有哪些等量关系?
大瓶数︰小瓶数=2︰5
大瓶所装消毒液+小瓶所装消毒液=22.5吨
设怎样的未知数可以表示上面的两个等量关系?
设这些消毒液应分装x大瓶和y小瓶,则
请你用代入消元法解答上面的方程组。
解之得,
答:
这些消毒液应该分装20000大瓶和50000小瓶.
三、课堂练习课本93练习第3、4题。
四、课堂小结
列二元一次方程组解决实际问题与列一元一次方程解决实际问题的思想和步骤是相同的,不同的是一个设一个未知数,一个设两个未知数.一般地,同一个问题既可以列一元一次方程来解决,也可以列二元一次方程组来解决,不过,有时设两个未知数列方程组更方便些。
五、作业:
课本98页的第4、6题.
板书设计
一、复习导入四、课堂小结
二、例题五、作业:
三、课堂练习
教学反思:
8.2消元——解二元一次方程组(三)
德育目标:
学习《中学生日常行为规范》第28条:
外出和到家时,向父母打招呼,未经家长同意,不得在外住宿或留宿他人。
教学目标:
掌握加减法解二元一次方程组。
重点难点:
用加减法解二元一次方程组是重点;
用加减法解相同未知数的系数不成整数倍的二元一次方程组是难点。
学情分析:
七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:
指导探究,合作交流
教学过程:
一、情景导入
王老师昨天在水果批发市场买了2千克苹果和4千克梨共花了14元,李老师以同样的价格买了2千克苹果和3千克梨共花了12元,梨每千克的售价是多少?
比一比看谁求得快.
最简便的方法:
抵消掉相同部分,王老师比李老师多买了1千克的梨,多花了2元,故梨每千克的售价为2元.
这种思想也可以用来解二元一次方程组。
二、加减消元法
①②
我们知道,对于方程组
可以用代入消元法求解,除此之外,还有没有别的方法呢?
这个方程组的两个方程中,y的系数有什么关系?
利用这种关系你能发现新的消元方法吗?
y的系数相等;用②-①可消去未知数y,
得(2x+y)-(x+y)=40-22解得x=18
把x=18代入①得y=4。
显然,由①-②也能消去未知数y.
①
②
思考:
联系上面的解法,想一想应怎样解方程组
这两个方程中未知数y的系数互为相反数,因此由①+②可消去未知数y,从而求出未知数x的值。
我们看到,把两个二元一次方程的两边分别相加减,可以达到“消元”的目的。
当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
三、例题
①
②
例用加减法解方程组
分析:
这两个方程中未知数的系数既不相反也不相同,直接加减不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。
解:
①×3,得9x+12y=48③
②×2,得10x-12y=66④
③+④,得19x=114
x=6
把x=6代入①,得3×6+4y=16
4y=-2,y=-
所以,这个方程组的解是
想一想:
本题如果用加减法消去x该怎么办?
把①×5,②×3即可。
四、课堂练习
课本96练习第1题。
五、课堂小结
1、什么是加减消元法?
2、用加减消元法解二元一次方程。
六、作业:
课本98页习题8.2第3、5题。
板书设计
一、情景导入
二、加减消元法:
思考→加减消元法的概念
三、例题
四、课堂练习
五、课堂小结
六、作业:
教学反思:
8.2消元——解二元一次方程组(四)
德育目标:
学习《中学生日常行为规范》第25条:
学会料理个人生活,自己的衣物用品收放整齐
教学目标:
初步学会用二元一次方程组解决有关的问题,进一步认识方程模型的重要性。
重点难点:
用二元一次方程组解决有关的问题是重点;列二元一次方程组是难点。
学情分析:
七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:
指导探究,合作交流
教学过程:
一、复习导入
1、什么是二元一次方程组?
什么是二元一次方程组的解?
2、解二元一次方组的基本思想是什么?
有哪些方法?
今天我们来运用二元一次方程组解决有关的问题。
二、师生互动,课堂探究
1.例题讲解(见P95例4)
分析:
如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦______公顷,3台大收割机和2台小收割机1小时收割小麦_______公顷.
解:
设1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据两种工作方式中的相等关系,得方程组
①②
去括号,得
②-①,得11x=4.4
解这个方程,得x=0.4
把x=0.4代入①,得y=0.2
这个方程组的解是
答:
1台大收割机和1台小收割机1小时各收割小麦0.4公顷和0.2公顷.
2.上面解方程组的过程可以用下面的框图表示:
3.练一练:
P97练习第2、3题.
三、归纳总结,知识回顾
这节课我们经历和体验了列方程组解决实际问题的过程,体会到方程组是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识及解方程组的技能.
四、作业P98习题8.2第6、7题
板书设计
一、复习导入
二、师生互动,课堂探究
1.例题讲解
2.解方程组的过程用框图表示
3.练一练
三、归纳总结,知识回顾
四、作业
教学反思:
8.3实际问题与二元一次方程
(1)
德育目标:
学习《中学生日常行为规范》第30条:
对家长有意见要有礼貌地提出,讲道理,不任性,不耍脾气,不顶撞。
教学目标:
学会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用。
重点难点:
解决含有多个未知数的实际问题是重点;找出问题中的两个等量关系是难点。
学情分析:
七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:
指导探究,合作交流
教学过程:
一、复习导入新课
1.复习:
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答
2.导入:
前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组.本节我们继续探究如何用方程组解决实际问题.
二、例题(教材P99页探究1)
看下面的问题。
探究1:
养牛场原有30只母牛和15只小牛,一天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?
分析:
怎样检验李大叔的估计是否正确?
(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验;
(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.
本题的等量关系是什么?
30只母牛一天用的饲料量+15只小牛一天用的饲料量=675
(1)(30+12)只母牛一天用的饲料量+(15+5)只小牛一天用的饲料量=940
(2)
设平均每只母牛和每只小牛1天各约需用饲料xkg和ykg,根据题意可列怎样的方程组?
解这个方程组得
答:
每只母牛和每只小牛1天各需用饲料为20kg和5kg,饲料员李大叔对母牛的食量估计正确,对小牛食量估计有一定的偏差。
三、课堂练习
某所中学现在有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
[答案:
]
四、课堂小结
提问:
通过这节课的学习,你知道用方程组解决实际问题有哪些步骤?
学生思考后回答、整理:
①设未知数.②找相等关系.③列方程组.④检验并作答.
五、作业:
课本108面1、2、3题。
板书设计
一、导入新课
二、例题
三、课堂练习
四、课堂小结
五、作业
教学反思:
8.3实际问题与二元一次方程
(2)
德育目标:
学习《中学生日常行为规范》第31条:
待客热情,起立迎送。
不影响邻里正常生活,邻里有困难时主动关心帮助。
教学目标:
学会借助二元一次方程组解决有关配套与设计的实际问题,再次体会二元一次方程组与现实生活的联系和作用。
重点难点:
运用二元一次方程解决有关配套与设计的应用题是重点;找出问题中的两个等量关系是难点。
学情分析:
七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。
教学方法:
指导探究,合作交流
教学过程:
一、导入新课
前面我们初步体验了用方程组解决实际问题的全过程,其实生产、生活中还有许多问题也能用方程组解决.
二、例题(教材P99页探究2)
看下面的问题:
探究2
据统计资料,甲、乙两种作物的单位面积产量的比是1:
2,现要在一块长200m,宽100m的长方形土地,分为两块长方形土地,分别种植两种作物,怎样划分这块地,使甲、乙两种作物的总产量的比是3:
4?
分析:
本题中的基本关系是什么?
本题中的等量关系有哪些?
总产量=单位面积产量×面积
甲作物的单位面积产量︰乙作物的单位面积产量=1︰2
甲作物的总产量︰乙作物的总产量=3︰4
怎样划分这块土地呢?
第一种是甲、乙两种作物的种植区域分别为长方形AEFD和BCFE,如图
(1);第二种是甲、乙两种作物的种植区域分别为长方形ABFE和FECD,如图
(2)。
对第一种种植方案,设AE=xm,BE=ym,可得怎样的方程组?
解这个方程组,得
具体怎么划分呢?
请你作答。
过长方形土地的长边上离一端()m处,把这块地分为两个长方形.较大一块地种甲作物,较小一块地种乙作物.
你能求出第二种种植方案的答案吗?
试试看。
三、课堂练习
一个长方形,把它的长减少4cm,宽增加2cm,变成一个正方形,且面积与长方形的面积相等,怎样划分长方形?
四、课堂小结
提问:
通过本节课的讨论,你对用方程解决实际的方法又有何新的认识?
学生思考后回答、整理.
五、作业:
课本P102页习题8.3第4、6题
板书设计
一、导入新课四、课堂小结
二、例题(教材P99页探究2)五、作业
三、课堂练习
教学反思:
8.3实际问题与二元一次方程(3)
德育目标:
学习《中学生日常行为规范》第32条:
严于律己,遵守公德。
教学目标:
学会用列表的方式分析、解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用。
重点难点:
解决含有多个未知数的实际问题是重点;
用列表分问题中的数量关系是难点。
学情分析:
七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生