中级微观经济学题库1120章电子教案.docx

上传人:b****7 文档编号:26240939 上传时间:2023-06-17 格式:DOCX 页数:39 大小:263.43KB
下载 相关 举报
中级微观经济学题库1120章电子教案.docx_第1页
第1页 / 共39页
中级微观经济学题库1120章电子教案.docx_第2页
第2页 / 共39页
中级微观经济学题库1120章电子教案.docx_第3页
第3页 / 共39页
中级微观经济学题库1120章电子教案.docx_第4页
第4页 / 共39页
中级微观经济学题库1120章电子教案.docx_第5页
第5页 / 共39页
点击查看更多>>
下载资源
资源描述

中级微观经济学题库1120章电子教案.docx

《中级微观经济学题库1120章电子教案.docx》由会员分享,可在线阅读,更多相关《中级微观经济学题库1120章电子教案.docx(39页珍藏版)》请在冰豆网上搜索。

中级微观经济学题库1120章电子教案.docx

中级微观经济学题库1120章电子教案

第十一章资产市场

11.1一块地上种着圣诞树。

在从现在开始的10年后的12月1日这些树将可以长成材。

到那时,每英亩标准的圣诞树可以卖1000美元。

在树被砍伐之后,土地的价值是每英亩200美元。

没有税收或者营业费用,在树长成被砍伐之前,也没有任何土地收益。

利率是10%。

(a)我们预期土地的市场价值可能是多少?

(b)假设圣诞树不一定非要在10年后才能出售,而是可以在任何一年里出售。

如果这些树在其树龄小于10年时被伐,其价值为零。

而在树龄为10年后,每英亩树的价值是1000美元,并且在随后的20年里,每英亩的价值将增加100美元。

在树被砍伐之后,种树的土地总是能够以每英亩200美元的价格出售。

为了最大化从树和土地上得到的收益的现值,应该何时砍伐这些树?

一英亩土地的市场价值将是多少?

11.2底特律Felines队的公开代言人宣布了与一个令人瞩目的新四分卫ArchieParabolar的签约。

他们说这一合同价值1000000美元,将从现在开始的一年后分20年进行支付,每年50000美元。

这一合同中包含一个条款,该条款能保证Archie即使是伤,一场比赛不能参加,也能拿到所有的钱。

体育记者们宣称,Archie成了一个“瞬时的百万富翁”。

(a)Archie的哥哥Fenwick的专业是经济学。

他对Achie解释说,Archie并不是百分富翁。

事实上,他的合同价值小于50万美元。

用文字解释一下为什么是这样的。

Archie的大学课程“体育管理”中没有现值这一部分,所以他哥哥试着把计算过程推导给看他。

以下是推导过程:

(b)假设利率是10%,并预计将一直保持10%。

如果从一年以后开始,需要永久性地每年支付给Archie和他的继承人1美元,那么购买Archie需要花费该队多少钱?

(c)从一年以后开始,永久性地每年支付50000美元时,购买一个永久的球员需要花费多少钱?

在上一部分,如果Archie将永久性地每年得到50000美元,你已经求出了他的合同的现值。

但是Archie并不能永久性地每年得到50000美元,这一支付在20年后将会中止。

Archie的实际合同的现值等于如下合同的现值,即该合同永久地每年支付给他50000美元,但是从第21年开始,Archie必须永久性地每年返还50000美元给队里。

因此,相对于现在,永久性地每年得到50000美元的现值减去从第21年开始、永久性地每年支付50000美元的现值,你就可以求出Archie的合同的现值。

(d)如果利率是10%,并将一直保持在这个水平上,那么从第21年开始的每年50000美元的支付流,将与从现在开始的第20年里一次性的总额为美元的收入的现值相同。

(e)如果利率是10%,并将一直保持在这个水平上,那么从现在开始的第21年后,永久性地每年支付50000美元的现值是多少?

(f)现在计算Archie的合同的现值?

11.3你是P.Bunyan森林公司的业务经理,你要决定何时砍伐树木。

如果树龄达到t年,则木材的市场价值由以下方程给出:

Bunyan先生每年可从银行得到5%的利率。

在树龄达到年后,树木价值的增长率将大于5%。

(提示:

由初等的微积分可知,如果F(t)=et(t),则F’(t)/F(t)=g’(t)。

(a)如果Bunyan先生只是将树木作为一种投资,那么他应该让这些树生长多少年?

(b)树龄为多少时这些树木的市场价值将达到最大?

11.4你预计某幅油画的价格将以每年8%的比例一直上涨下去。

市场借贷的利率是10%。

假设买或卖没有经纪费用。

(a)如果你现在以x美元的价格买下这幅画并在一年以后卖出,那么拥有这幅画而不是把这x美元以市场利率贷出去,给你带来的成本是多少?

(b)为拥有这幅画,你愿意每年支付100美元。

写出一个方程,根据该方程你可以解出你刚好愿意为这幅画支付的价格x。

(c)你愿意为买这幅画支付多少钱?

11.5FisherBrown在普通债券上的收入税税率是40%。

普通债券的利息率是10%。

市政债券的利息无需缴税。

(a)如果市政债券的利息率是7%,他是应该买市政债券还是普通债券?

(b)HunterBlack比FisherBrown挣的钱少,他在普通债券上的收入税税率只有25%。

他应该买哪种债券?

(c)如果Fisher在债券上投资了1000000美元,Hunter在债券上投资了10000美元,那么Fisher为其债券利息支付多少税收?

Hunter为其债券利息支付多少税收呢?

(d)政府正在考虑一种新的税收方案,在这一方案下,利息收入无需缴税。

如果这两种债券上的利息率都不变,允许Fisher和Hunter调整自己的投资组合,则Fisher的税后收入将会增加多少?

Hunter的税后收入又会增加多少呢?

(e)如果利息率都不变,税法的变化将会使得市政债券的需求量如何变化?

(f)为了吸引购买者,新发行的市政债券必须支付多高的利息率?

(g)你认为最初有7%的利息率的旧市政债券的市场价格会发生什么变化?

11.6No博士有一张James公司发行的债券,序列号是007。

该债券在随后的三年时间里每年支付200美元的利息,三年后债券到期并支付2000美元的面值。

(a)利率为10%时,James公司的007债券对No博士来说值多少钱?

(b)利率为5%时,James公司的007债券有多值钱呢?

(c)Yes女士愿意出2200美元买No博士的James公司007债券。

如果利率是10%,No博士是应该接受还是拒绝Yes女士的出价?

如果利率是5%呢?

(d)为了毁灭世界,No博士雇用Know教授研制一种肮脏的意志电波。

为了把Know教授从他所在的大学里吸引过来,No博士必须每年支付给Know教授200美元。

这种肮脏的意志电波需要三年时间研制,并且最后可用2000美元造好。

如果利率是5%,为了对这一卑鄙的项目进行融资,No博士今天必须筹到多少钱?

在利率为10%时,世界会因为No博士而有更多的危险还是更少的危险?

11.7你可能已经认识到了,经济学是一门很难的专业。

这种辛苦有什么回报吗?

上题中讨论过的美国人口普查报告表明可能是有回报的。

该报告中有这样一些表格,这些表格记载的是不同领域的学位获得者的工资收入。

对于学士学位,最有吸引力的专业是经济学和工程学。

经济学家的平均工资收入每年大约是28000美元,工程师的大约是每年27000美元。

心理学专业的平均年工资收入大约为15000美元,英语专业的大约为14000美元。

(a)你能对这些差异作出一些解释吗?

(b)同一个表格还表明,拥有商学高级学位的一个普通人每年可挣38000美元,而拥有医学学位的普通人每年可挣45000美元。

获得学士学位要花四年时间,假设商学高级学位要在获得学士学位后再学两年才能得到,而医学学位要在获得学士学位后再学四年才能得到。

假设你现在22岁,刚刚大学毕业。

r=0.5,如果获得商学高级学位,工资为拥有这一学位的人的平均工资,并且在65岁时退休,计算此时你一生收入的现值。

对医学学位也做类似的计算。

第十二章不确定性

12.1Willy有一个位于河附近的小巧克力厂。

这条河春天时有时会发洪水,洪水的后果十分严重。

Willy打算明年夏天卖掉工厂退休。

他将拥有的唯一的收入是卖掉工厂的收益。

如果没有发洪水,工厂将值500000美元。

如果发洪水,洪水后工厂剩余的部分将只值5000美元。

Willy可以购买洪水保险,每投保1美元要交纳0.10美元的保险费。

Willy认为春天有洪水的可能性是1/10。

令cF表示有洪水时的或有商品消费量,CNF表示没有洪水时的或有商品消费量。

Willy的冯·诺伊曼-摩根斯坦效用函数是

(a)如果他不买保险,则每种情况下,Willy的消费将等于他工厂的价值。

因此Willy的或有商品束是(cF,cNF)=。

(b)为了能在发洪水时得到x美元的保险赔偿,Willy必须支付的保险费是0.1x美元。

(无论有没有洪水都必须支付这一保险费。

)如果Willy投保x美元,那么如果发洪水,他将得到x美元的保险收益。

假设Willy签了份保险合同,这份保险合同将在发洪水时支付给他x美元。

这样在支付了保险费后,他将能消费cF=。

如果Willy投的保险是x美元并且没有发洪水,则他能够消费cNF=。

(c)从上面求出的关于cF和cNF的方程中消去x就可以得到Willy的预算方程。

当然,这一预算方程有许多等价的形式,因为在预算方程的两边同时乘以一个正的常数后得到的式子与原来的式子是等价的。

表明cNF的“价格”为1的预算方程的形式可以写成是0.9cNF+

cF=。

(d)Willy在两种或有商品,即没有洪水时的消费和有洪水时的消费之间的边际替代率是

为求出他最优的或有消费束,必须使他边际替代率的值等于

解这一方程,你会求得Willy将以的比率消费这两种或有商品。

(e)已知Willy消费cF和cNF的比率和他的预算方程,你可以求出他最优的消费束,这一消费束(cF,cNF)=。

Willy将会购买一份能在发洪水时支付给他

美元的保险。

他必须支付的保险费是。

12.2HjalmerIngqvist的养子Earl有些不良习性。

事实证明Earl喜欢赌博。

他对或有消费束的偏好可由如下的效用函数表示:

u(c1,c2,π1,π2)=π1

+π2

(a)刚好有一天,一些男孩正待在Skoog酒馆里,这时Earl进来了。

他们开始讨论能让Earl接受多坏的赌局。

当时Earl有100美元。

KennyOlson洗了一副牌,并提议如果Earl从这副牌中抽不到黑桃,Earl就输给他20美元。

假设Earl相信Kenny不会做假,则Earl赢得该赌局的概率是1/4,而输掉该赌局的概率是3/4。

如果Earl赢得该赌局,他将有

美元;如果他输掉该赌局,他将有美元。

而如果他不接受这一赌局,他的期望效用将是。

因此他拒绝这一赌局。

(b)正当他们认为Earl可能改变了行径之时,Kenny又给出了一个赌局。

除了赌注是100美元而不是20美元以外,这个赌局与上面的赌局一样。

如果Earl接受这一赌局,他的期望效用是多少?

Earl愿意接受这一赌局吗?

(c)令事件1表示从一副完整的牌中抽到的是黑桃,事件2表示抽到的不是黑桃。

Earl在事件1时的收入c1和事件2时的收入c2之间的偏好可以由方程表示。

用蓝笔在下图中画出Earl通过点(100,100)的无差异曲线。

12.3上一道题中的SidewalkSam对两种自然状态下的消费的效用函数是

,其中cs是他晴天时消费的美元价值,cr是他雨天时消费的美元价值,π是下雨的概率。

而下雨的概率π=0.5。

(a)Sam雨天时最优的消费量是多少单位?

(b)Sam购买多少张雨天票最优?

12.4SidewalkSam的哥哥MorganvonNeumanstern是一个期望效用最大化者。

他关于财富的冯·诺伊曼-摩根斯坦效用函数是u(c)=lnc。

Sam的哥哥在大西洋城的另一个海滩边卖太阳镜。

他每天挣的钱与Sam的一样多。

他可以像Sam那样在娱乐城里玩赌博游戏。

(a)如果Morgan认为每天天晴和下雨的概率都是50%,则他消费(cs,cr)时的期望效用是多少?

(b)Morgan的效用函数与Sam的效用函数相比如何?

其中一个效用函数是另一个的单调变换吗?

(c)Morgan最优的消费组合是什么?

答案:

Morgan将在晴天消费,在雨天消费。

这一消费组合与Sam的相比如何?

12.5得克萨斯州MuleShoe的BillyJohnPigskin的冯·诺伊曼一摩根斯坦效用函数是

BillyJohn大约重300磅,他跑得比长耳兔和送比萨的车还快。

BillyJohn将在大学橄榄球队里开始四年级的生活。

如果他不受重伤,他打职业橄榄球的收入将是1000000美元。

如果他因受伤而结束橄榄球生涯,他将会在家乡当一名垃圾清扫工,收入是10000美元。

BillyJohn受重伤而不得不结束橄榄球生涯的概率是10%。

(a)BillyJohn的期望效用是多少?

(b)BillyJohn购买了p美元的保险,如果他在大学期间受重伤而结束橄榄球生涯,他将得到1000000美元的保险支付。

这样无论出现什么情况,他都肯定有1000000-p美元的收入。

通过解方程可以求出BillyJohn愿意为这样的一份保险支付的最高价格。

写出该方程。

(c)解该方程求出p。

12.6一张彩票的确定性等价是指你确定性地拥有的一笔钱,这笔钱使得你的状况与拥有这张彩票时的状况一样好。

假设有一张彩票是事件1发生时你得到x,事件1不发生时得到y。

你在这张彩票上的冯·诺伊曼-摩根斯坦效用函数是

,其中π是事件1发生的概率,1-π是事件1不发生的概率。

(a)如果π=0.5,计算如下彩票的效用,该彩票是如果事件1发生你得到10000美元,反之得到100美元。

(b)如果你能确定性地得到4900美元,你的效用是多少?

(提示:

如果你能确定性地得到4900美元,那么你在两种情况下都得4900美元。

(c)给定这一效用函数以及π=0.5,写出如下彩票的定确性等价的一般表达式,该彩票是事件1发生时你得到x,事件1不发生时得到y。

(d)如果事件1发生时你得到10000美元,事件1不发生时得到100美元,计算此时的确定性等价。

12.7DanPartridge是一个风险回避者,他希望最大化自己的期望效用

,其中c是他的财富。

Dan有50000美元的安全资产,他还有一套房子,这套房子所在的地方经常发生森林火灾。

如果房子烧毁了,则房子的残余部分以及盖房子的那块地就只值40000美元,从而Dan的总财富就是90000美元。

如果房子没有烧毁,其价值是200000美元,从而Dan的总财富就是250000美元。

房子被烧毁的概率是0.01。

(a)如果他没有购买火为险,计算他的期望效用。

(b)如果他没有购买火灾险,计算他所面临的彩票的确定性等价。

(c)假设他可以购买保险,每100美元保险的价格是1美元。

例如,如果他购买价值100000美元的保险,那么无论发生什么情况,他都必须支付给保险公司1000美元。

但是如果他的房子烧毁了,他可以从保险公司那里得到100000美元。

如果Dan购买价值160000美元的保险,他将得到完全的保险,意思是说,无论发生什么情况,他的税后财富都是

(d)因此,如果购买完全的保险,他的财富的确定性等价是,他的期望效用是。

第十三章风险资产

13.1FennerSmith正在考虑在两种资产之间分配其财富。

其中风险资产的期望收益率是30%,标准差是10%;而安全资产的期望收益率是10%,标准差是0%。

(a)如果Smith先生将其财富的x%投资在风险资产上,则其期望收益是多少?

(b)如果Smith先生将其财富的x%投资在风险资产上,则其财富的标准差是多少?

(c)解以上两个方程,求出作为标准差的函数的Smith先生财富的期望收益。

(d)在下图中画出这条“预算线”。

(e)如果Smith先生的效用函数是

,则Smith先生最优的rx的值是,最优的σx的值是。

(提示:

你必须解关于两上未知变量的两个方程。

其中的一个方程是预算约束方程。

(f)标出Smith先生的最优选择点,并画出一条通过该点的无差异曲线。

(g)Smith先生将在风险资产上投资多大份额的财富?

13.2牧场主AlfAlpha有一个位于沙山上的牧场。

牧场带给他的收益是一个依赖于降雨量的随机变量,多雨的年份收益高,干旱的年份收益低。

该牧场的市场价值是5000美元,期望收益是500美元,标准差是100美元。

降雨量每超过平均降雨量一英雨,利润就增加100美元;相反,每低于平均降雨量一英寸,利润就减少100美元。

牧场主Alf另外还有5000美元准备投资在第二个牧场上。

他可以选择购买的牧场有两个。

(a)其中的一个牧场位于一个不会发洪水的低地上。

无论天气如何,该牧场每年的期望收益是500美元。

如果AlfAlpha购买的第二个牧场是该牧场,则其总投资的期望收益率是多少?

此时其收益率的标准差是多少?

(b)他可以购买的另外一个牧场紧挨着一条河。

这使得该牧场在干旱年份的收益很好,但是在多雨的年份里,这条河会发洪水。

这个牧场的价值也是5000美元。

该牧场的期望收益是500美元,标准差是100美元。

降雨量每低于平均降雨量一英寸,利润就增加100美元;相反,每高于平均降雨量一英寸,利润就减少100美元。

如果Alf购买的是这个牧场,并且仍然拥有他在沙山上的牧场,则他在其总投资上的期望收益率是多少?

此时其总投资收益率的准差是多少?

(c)如果Alf是一个风险回避者,那么他会选择哪一个牧场?

为什么?

第十四章消费者剩余

14.1Quasimodo消费耳塞和其他商品。

他对耳塞x和其他商品上所花的钱y的效用函数由u(x,y)=100x-x2/2+y给出。

(a)Quasimodo的效用函数是哪一种类型的?

(b)他对耳塞的反需求曲线是什么?

(c)如果耳塞的价格是50美元,则他会消费多少单位的耳塞?

(d)如果耳塞的价格是80美元,他会消费多少单位的耳塞呢?

(e)假设Quasimodo每月总共有4000美元可以花。

如果耳塞的价格是50美元,那么他消费耳塞和其他商品的总效用是多少?

(f)如果耳塞的价格是80美元,那么他消费耳塞和其他商品的总效用是多少?

(g)当价格从50美元增加到80美元时,效用减少了。

(h)当价格从50美元增加到80美元时,消费者净剩余的变化量是多少?

14.2你可以在下图中看到SarahGamp在黄瓜和其他商品之间的无差异曲线的图形。

假设黄瓜和“其他商品”的参考价格都是1。

 

(a)为购买一个与A点无差异的消费束,Sarah最少必须有多少钱?

(b)为购买一个与B点无差异的消费束,Sarah了少必须有多少钱?

(c)假设黄瓜的参考价格是2,其他商品的参考价格是1。

为购买一个与A点无差异的消费束,她需要多少钱?

(d)在新价格下,为购买一个与B点无差异的消费束,Sarah最少必须有多少钱?

(e)无论Sarah面临的价格是多少,她购买一个与A点无差异的消费束所需的钱一定比购买一个与B点无差异的消费束所需的钱(更多,更少)。

14.3Ulrich喜欠计算机游戏和香肠。

事实上,他的偏好可以由式u(x,y)=ln(x+1)+y表示,其中x是他玩的游戏的数量,y是他花在香肠上的美元数。

令px表示计算机游戏的价格,m是他的收入。

(a)写出能表示Ulrich的边际替代率等于价格比的表达式。

(提示:

还记得第6章中的DonaldFribble吗?

(b)因为Ulrich的偏好是形式的,所以只要通过解该方程就可以求出他对计算机游戏的需求函数,也就是。

他对花费在香肠上的美元数的需求函数是。

(c)计算机游戏的价格是0.25美元,Ulrich的收入是10美元。

则Ulrich需求

单位的计算机游戏和价值美元的香肠。

他从这一消费束中得到的效用是

(四舍五入到小数点后第二位)。

(d)如果我们把Ulrich所有的计算机游戏都拿走,那么为了使他与原来的状况一样好,他必须在香肠上花多少钱?

(e)现在,每单位游戏要征收0.25美元的娱乐税,并且这一税收全部转移到消费者身上。

在这一税收下,Ulrich将需求单位的计算机游戏和价值美元的香肠。

他从这一消费束中得到的效用是(四舍五入到小数点后第二位)。

(f)现在,如果我们把Ulrich所有的计算机游戏都拿走,要使他与选择征税后购买的消费束时的状况一样好,他必须在香肠上花多少钱?

(g)因为税收产生的Ulrich的消费者剩余的变化量是多少?

政府通过征税从Ulrich这里得到的税收是多少?

14.4Lolita是一头聪明且美丽的荷兰牛,她只吃两种东西,牛饲料(由磨碎的玉米和燕麦做成)和干草。

她的偏好由效用函数u(x,y)=x-x2/x+y表示,其中x是饲料的消费量,y是干草的消费量。

Lolita学过预算和最优化的技巧,她总是在其预算约束下最大化自己的效用。

Lolita的收入是m美元,她可以按照自己的意愿把钱花在饲料和干草上。

干草的价格总是1美元,牛饲料的价格由p表示,并且0<p≤1。

(a)写出Lolita关于牛饲料的反需求函数。

(提示:

Lolita的效用函数是拟线性的。

当y是计价物并且x的价格是p时,拟线性效用f(x)+y的反需求函数可能过求p=f’(x)而得到。

(b)如果牛饲料的价格是p,Lolita的收入是m,她会选择多少干草?

(提示:

她的钱不是花在饲料上就是花在干草上。

(c)将这些值代入她的效用函数,求出她在这一价格和收入下能够达到的效用水平。

(d)假设Lolita每天的收入是3美元,饲料的价格是0.50美元。

她购买何种消费束?

如果牛饲料的价格涨到1美元,那么她将购买何种消费束?

(e)为避免牛饲料价格上涨到1美元,Lolita愿意支出多少钱?

这是收入的(补偿,等价)变化。

(f)假设牛饲料的价格涨到了1美元。

在原来的价格下,为使她与原来的状况一样好,必须再给Lolita多少钱?

该值就是变化。

被偿变化和等价变化哪一个更大,还是一样大?

(g)在价格是0.5美元,收入是3美元时,Lolita的消费者净剩余是多少?

14.5F.Flintstone有拟线性偏好,并且他对雷龙夹饼(BrontosaurusBurgers)的反需求函数是P(b)=30-2b。

Flintstone先生当前以10美元的价格消费10单位的夹饼。

(a)他愿意为这一消费量而不是根本就不消费夹饼支付多少钱?

他的消费者净剩余是多少?

(b)Bedrock镇是雷龙夹饼的唯一供应地。

该镇决定将每单位夹饼的价格从10美元提高到14美元。

Flintstone先生消费剩余的变化量是多少?

14.6KarlKapitalist愿意在p>40的任意价格水平下生产p/2-20单位的椅子。

在价格低于40时他将不生产。

如果椅子的价格是100美元,Karl将生产单位的椅子。

在这一价格下,他的生产者剩余是多少?

14.7Q.Moto女士喜欢敲教堂的钟,她喜欢每天敲10个小时。

当x≤10时,她的效用函数是u(m,x)=m+3x,其中m是她在其他商品上的支出,x是她敲钟的小时数。

如果x≤10,她的手就会起水泡,很疼,所以比她不敲钟时的状况还要糟糕。

她的收入是100美元,教堂的司事允许她每天敲10个小时的钟。

(a)由于村民们的抱怨,司事决定限制Moto女士每天只敲5个小时的钟。

这对于Moto女士来说是个坏消息。

事实上,她觉得这与她的收入减少美元一样的坏。

(b)司事退让了一步,他允许Moto女士按自己的意愿选择每天敲多少小时的钟,只要她愿意为这一特权每小时支付2美元。

她现在会敲多少小时的钟?

对她的活动的这一税收相当于她的收入减少多少美元?

(c)村民们还在抱怨。

司事将敲钟的价格提高到每小时4美元。

她现在敲多少小时的钟?

相对于她可以免费敲钟的情况,这一税收的效应相当于她的收入减少了多少美元?

第十五章市场需求

15.1在南达科他州的GapPump,有两种类型的消费者,别克车车主和道

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 历史学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1