关于不确定条件下的最短路径问题的研究.docx

上传人:b****7 文档编号:26115287 上传时间:2023-06-17 格式:DOCX 页数:11 大小:163.88KB
下载 相关 举报
关于不确定条件下的最短路径问题的研究.docx_第1页
第1页 / 共11页
关于不确定条件下的最短路径问题的研究.docx_第2页
第2页 / 共11页
关于不确定条件下的最短路径问题的研究.docx_第3页
第3页 / 共11页
关于不确定条件下的最短路径问题的研究.docx_第4页
第4页 / 共11页
关于不确定条件下的最短路径问题的研究.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

关于不确定条件下的最短路径问题的研究.docx

《关于不确定条件下的最短路径问题的研究.docx》由会员分享,可在线阅读,更多相关《关于不确定条件下的最短路径问题的研究.docx(11页珍藏版)》请在冰豆网上搜索。

关于不确定条件下的最短路径问题的研究.docx

关于不确定条件下的最短路径问题的研究

关于不确定条件下的最短路径问题的研究

关于不确定条件下的最短路径问题的研究

摘要:

在利用最短路模型解决问题时,由于天气、运输条件以及时间段等原因,网络中弧的权值经常很难给出确切的值。

对传统的最短路径优化模型提出了挑战,也为最短路径优化模型的进一步发展提供了新的机遇。

本文主要就不确定条件下最短路径问题进行研究,介绍了一种不确定条件下最短路径问题随机优化模型――有约束的期望最短路径模型,利用结合随机模拟方法和遗传算法的混合智能算法进行求解。

通过系统的学习不确定条件下的最短路径问题的解决方法,开拓了思路,对自己运用系统思维解决自己研究方向的问题有很大的启发。

关键字:

网络优化;不确定最短路径问题;系统思维

一、引言

最短路径问题是指在网络中寻找节点间具有最小长度(或最小费用)的路径,具有重要的理论和实际应用意义。

一方面,它可以直接应用于许多实际问题,如各种管道的铺设,线路安排等;另一方面,它也常被利用为解决其他一些优化问题的工具,是网络优化中的一个基本而又重要的问题。

因此运筹界、工业界的学者对最短路径及其变形问题就算法和应用等方面进行了广泛的研究。

然而在很多具体的应用中,我们遇到的信息,存在着客观的或者人为的不确定性,这种不确定性的表现形式是多种多样的,例如随机性、模糊性等。

在利用最短路径模型解决问题时,由于天气、运输条件以及时间段等原因,网络中弧的权值经常很难给出确切的估计,这

其中

表示弧

包含在该路径中,

表示弧

不包含在该路径中,容易证明在有向无圈图中

是一条从节点1到节点n的路,当且仅当

,那么路

长度(目标函数)就可以写成为

优化的目标是使

最小。

如果

为确定的数,则求

的最小值是有定义的,但

是随机变量时,导致目标函数

也为随机变量,这样求

的最小值也就失去了意义。

因此,我们有必要根据随机理论知识,对随机条件下的最短路径进行定义,建立相关的数学模型。

三、有约束的期望最短路径模型的建立

定义1:

为图G中从源节点1到目标节点n的不同路径,若有

则称期望条件下路

比路

短,其中

称为

的期望路长。

在实际应用中境下的期望值模型决策者根据路径长度的期望值来做决策,则考虑不确定环期望值模型是指在期望约束下,使目标函数的期望值达到最优。

为了寻找期望的最短路径,建立了最短路径的期望值模型。

(3.1)

(3.2)

(3.3)

其中,式(3.1)为优化目标,即路的期望权值最小,亦即期望最短路;式(3.2)为约束条件,表示路权的第二分量不超过C;式(3.3)保证

为有向图中节点1到节点n的一条路。

四、有约束的期望最短路径模型的求解

通常情况下,不确定规划模型由于包含有不确定函数而变得很难用传统的方法来求解。

我们这里介绍一种结合随机模拟方法和遗传算法的混合智能算法来求解以上建立的模型。

4.1计算不确定函数的随机模拟方法

对于随机不确定优化模型,将其转化为等价的确定性优化模型是非常困难的.只有在一些特殊情况下才能做到,对一些较复杂的问题通常很难做到这一点。

为了在起点1与终点n之间的众多路径中搜索出满足约束条件的最优路径,我们采用随机模拟方法来计算最短路问题中的不确定函数.随机模拟(也称MonteCarlo模拟)是随机系统建模中刻画抽样试验的一门技术,它主要依据概率分布对随机变量进行抽样。

虽然模拟技术只给出统计估计而非精确结果,且应用其研究问题需花费大量的计算时间,但对那些无法得到解析结果的复杂问题来说,这种手段可能是惟一的有效的工具。

随机模拟的基本思想是根据问题建立一个概率模型,通过某种用数字进行的假象试验得到抽样值,然后进行统计处理,将结果作为问题的解。

随机模拟处理问题的基本步骤是:

①构造概率统计模型;②定义随机变量;③通过模拟获得子样;④统计计算。

随机模拟主要依据分布函数或经验分布对随机变量进行抽样,它的理论基础是大数定理。

下面介绍计算最短路径中不确定函数的随机模拟步骤:

模拟不确定函数:

首先根据随机向量

各分量的分布函数从样本空间产生样本

,由强大数定律可知,当

因此只要N充分大,

就可以用来作为

的估计值。

这样设计求

的随机模拟方法如下:

步骤1.设L=0

步骤2.根据各条弧上的随机变量的分布函数产生样本

步骤3.

步骤4.重复步骤2和3共N次

步骤5.

4.2遗传算法

遗传算法是一种通过模拟自然进化过程搜索最优解的方法。

在解决复杂的全局优化问题方面,过去30年中,遗传算法在解决复杂的全局优化问题方面得到了成功的应用,并受到了人们的广泛关注。

在优化问题中,如果目标函数是多峰的,或者搜索空间不规则,很容易在局部最优解附近徘徊。

这就要求所使用的算法必须具有高度的鲁棒性,以避免在局部最优解附近徘徊,而遗传算法的优点恰好在于全局搜索。

其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索过程对系统模型的依赖较少尤其适用于处理传统搜索方法难以解决的复杂的和非线性问题。

另外,遗传算法本身并不要求对优化问题的性质作一些深入的数学分析,从而对那些不太熟悉数学理论和算法的使用者来说,无疑是方便的。

自Holland[3]用遗传算法来解决组合问题以来,由于该算法的随机搜索方法,己经被应用到通讯、工业工程等很多领域,得到了各界学者的广泛研究[4,5]。

为了求解不确定环境下的最短路问题模型,我们利用遗传算法来求各种准则下的最优路径,采用如下的路径的表示方法、初始化过程和遗传算子。

4.2.1遗传表示

选择所求解问题解的一种合适的表示形式是用遗传算法解决问题的基础。

因此对于特定的问题实例,需要对问题进行仔细分析,才能准确表示问题的实质和设计该问题的遗传算子。

根据网络图中最短路的特点和遗传算法的编码原则,本文介绍的遗传表示方法是利用向量

作为染色体表示图G从节点1到节点n的一条路径。

因为不同的路径包括不同的节点和弧,所以染色体的长度是不固定的。

如果

表示从节点1到节点n的路径,则有

我们给出下面的定义,

对于所有的

很容易验证按照这种方式获得的

从节点1到节点n的一条路径,我们可以按照下面的过程获得一条染色体。

4.2.2染色体的初始化

初始群体的创建有两种方式:

随机初始化和启发式初始化。

为了获得一条可行的染色体,本文介绍采用启发式染色体初始化的步骤:

步骤1.设l=0,

步骤2.随机产生m使得

步骤3.

步骤4.重复步骤2和步骤3直到:

步骤5.获得一条染色体

4.2.3遗传算子

在遗传算法中,遗传算子模拟生物的遗传过程产生新的后代,在遗传算法中起着重要的作用[5]。

在我们的算法中,交叉算子、变异操作以及选择过程设计如下。

4.2.4染色体的交叉

交叉操作是由一对父代染色体通过交换其部分基因,从而形成两个新的个体,交叉算子扮演着在当前搜索区域内寻找性能更佳的个体这样一个角色。

交叉方法一般有单点交叉、多点交叉、均匀交叉和算术交叉等方法.针对节点序列编码及网络路径的特点,本文介绍单点交叉。

交叉方法如下:

为两条染色体。

.在这两条染色体中选择一个相同的节点,如果在两条染色体中有共同的节点,则随机地选择一个,譬如

则我们可以得到下面的两条新的染色体:

显然这两条新的染色体也是从节点1到节点二的一条可行路径。

如果两条染色体没有共同的节点,则不进行交叉。

4.2.5染色体变异

变异按照某个特定概率Pm随机改变群体中个体的局部基因位,将算法引入新的解空间进行搜索。

它本身是一种局部随机搜索技术,与选择、交叉结合在一起保证了遗传算法的有效性,使遗传算法具有局部的随机搜索能力,同时使遗传算法保持群体的多样性。

对于用路径表示的染色体,变异操作把连接节点组成的路径块作为基因块,实现染色体中的基因块变异.具体方法如下:

为一条染色体,我们设计如下的变异操作过程。

中随机地产生一个整数,记为i。

则我们利用染色体初始化的方法从节点

到n产生一条路径

,则可以产生一条新的染色体

4.2.6选择过程

一般而言,选择的过程是一种基于适应度的优胜劣汰的过程,当前群体中适应度高的个体具有更高的机会进入下一代群体。

选择压力是指最佳个体选中的概率与平均选中概率的比值,选择压力过高或过低对算法的性能都有较大的影响。

本文介绍使用轮盘赌选择方法来选择染色体。

每次选择一条染色体,直到获得

条染色体为止。

4.3混合智能算法

结合随机模拟方法和遗传算法相结合的混合智能算法[6]一般步骤:

步骤1.随机产生

条染色体

步骤2.利用我们所设计的随机模拟或模糊模拟对每一条染色体计算其目标函数值。

步骤3.计算每一条染色体适应值。

我们利用基于序的评价函数为

其中,假设染色体己经根据他们的目标函数值从好到坏排列好,

为遗传算法中的参数。

步骤4.选择染色体。

步骤5.利用上面提到的交叉和变异操作更新染色体

步骤6.重复步骤2到步骤5直到满足结束条件。

步骤7.返回最好的染色体

五、小结

本文介绍了一种不确定条件下最短路径问题解决方法,对不确定条件下最短路径问题,根据不同的决策要求,建立有约束的期望最短路径模型,由于模型中包括不确定参数,因此,不能利用传统的方法来求解,本文介绍一种结合随机模拟方法和遗传算法的混合智能算法来进行求解,该算法利用随机模拟方法计算最短路径问题的不确定函数,将期望最短路径模型转化为等价的确定性优化模型,然后利用遗传算法搜索满足约束条件的最优路径。

参考文献

[1]DuboisD,PradeH.FuzzySetsandSystems:

TheoryandApplications.NewYork:

AcademicPress,1980

[2]DuboisD,PradeH.Systemsoflinearfuzzyconstraints.FuzzySetsandSystems1980,3:

37-8

[3]HollandJ.AdaptatininNaturalandArtificialSystem.UniversityofMichiganPress,AnnArbor,MI,1975

[4]GenM,ChengR.GeneticAlgorithmsandEngineerOptimization.NewYork:

JohnWileyandSons,2000

[5]HsinghuaC,PremkumarG,ChuC.Geneticalgorithmsforcommuicationsnetworkdesign-anempiricalstudyofthefactorsthatinfluenceperformance.IEEETrans.onEvol.Comput,20015(3):

236-249

[6]XiaoyuJi,ModelsandAlgorithmforStochasticShortestPathProblem,AppliedMathematicsandComputation,2005170

(1):

503-514(SCI)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1