基于PID控制的一级倒立摆系统的研究.docx
《基于PID控制的一级倒立摆系统的研究.docx》由会员分享,可在线阅读,更多相关《基于PID控制的一级倒立摆系统的研究.docx(33页珍藏版)》请在冰豆网上搜索。
基于PID控制的一级倒立摆系统的研究
本科生毕业设计(论文)
论文题目:
基于PID控制的一级倒立摆系统的研究
姓名:
学院:
专业:
班级、学号:
指导教师:
摘要
本文的研究对象为一级倒立摆系统,主要是基于PID控制的一级倒立摆控制系统的设计。
利用PID参数整定的多种方法对PID的三个参数进行调节,并对其优化,然后用利用Matlab对其进行仿真,并对最后仿真图的结果进行分析与比较。
倒立摆是一种典型的非线性、多变量、强耦合、快速的、自然不稳定的系统。
在实际生产生活中有很多类似的系统,故研究一级倒立摆系统的PID控制具有很大的实际意义。
本文介绍了多种PID参数整定算法,主要采用了的是Z-N整定法,并详细介绍了PID参数整定算法的相关理论和具体操作方法。
在本文中还建立了一级倒立摆的数学模型和物理模型。
本文着重讲述了Z-N整定法和试凑法对PID三个参数的进行优化的具体方法。
用Matlab对一级倒立摆系统进行了仿真,并且比较这些方法的优缺点,对最后的仿真图结果研究和分析。
得出PID参数整定方法的优缺点。
关键词:
PID控制器参数整定一级倒立摆Matlab仿真
Abstract
ObjectofthispaperisaninvertedpendulumsystemismainlybasedonPIDcontrolaninvertedpendulumcontrolsystemdesign.UseavarietyofPIDparametertuningmethodtoadjustthethreeparametersofPID,anditsoptimization,andthenusethemusingmatlabsimulation,andtheresultsofthelastsimulationdiagramanalysisandcomparison.
Invertedpendulumisatypicalnon-linear,multi-variable,strongcoupling,fast,naturallyunstablesystem.Inreallifetherearealotofsimilarproductionsystems,itisofaninvertedpendulumsystemPIDcontrolhasgreatpracticalsignificance.ThisarticledescribesavarietyofPIDparametertuningalgorithm,themainuseoftheZ-Nentiretitration,anddetailsofthePIDparametertuningalgorithmsrelatedtheoryandspecificmethodsofoperation.Inthisarticle,alsoestablishedamathematicalmodeloftheinvertedpendulumandphysicalmodels.ThispaperfocusesontheZNTuningMethodforPIDandgeneticalgorithmstooptimizethethreeparametersofspecificmethods.UsingMatlabonaninvertedpendulumsystemissimulated,andcomparetheadvantagesanddisadvantagesofthesemethods,drawingonthefinalresultsofthesimulationstudyandanalysis.DrawtwodifferentPIDparametertuningmethodadvantagesanddisadvantages.
Keywords:
PID(Proportion Integration Differentiation)controllerParametertuningAninvertedpendulumMatlabsimulation
1绪论
1.1课题的研究背景及意义
从最初的倒立摆概念提出,再到Bang-Bang的稳定控制,然后到状态反馈的理论,再到今天的模糊控制和神经网络。
现在关于倒立摆的研究已经进入到了一个相对成熟的阶段。
而关于PID的参数整定有很多种整定方法,不同的情况适应不同的整定方法。
每种整定方法的结果并不一致,所以就需要我们比较从而找出一种最适合的。
一级倒立摆系统是一种典型的、非线性、多变量、强耦合、快速的、自然不稳定的系统,这种系统在实际的生产生活中很常见。
PID控制器是工业领域最常用的控制器,它的优点主要有以下方面,工作原理简单,使用比较方便;适应性强,应用广泛;鲁棒性强,控制品质受被控对象特性的变化影响较小。
PID的几种控制思想:
自适应控制思想和常规PID控制器相结合的自适应PID控制或自校正PID控制。
智能控制与常规控制结合的智能PID控制。
模糊PID控制。
神经网络PID控制。
预测PID控制。
时至今日,PID控制技术在工业控制中仍然占有主导地位。
所以对PID控制的一级倒立摆系统的研究具有很大的实际意义。
首先,关于一级倒立摆系统的研究要先建立力学平衡的传递函数以及状态空间表达式等数学模型和物理模型,接着分析它的稳定性和客观可控性。
最后运用一种或几种PID参数整定方法、系统频率响应分析与校正。
最后在Matlab上进行仿真,比较几种算法的效果差别。
从某种程度上来说,有关倒立摆的研究不仅有理论意义,而且还有一些工程背景,工程实践中,往往有些可行性的实验问题,倒立摆就可以起到桥梁作用能够使它的理论与方法得到检验。
通过对一级倒立摆的系统的控制,我们检验了一些控制方法以及它们是否具有比较强的处理非线性和不稳定性问题的能力;这些控制方法在航天科技、军工制造以及机器人和一般的工业领域都有广泛的应用。
在通过对一级倒立摆系统的不断研究中,总结一些非线性、多变量、强耦合、快速的、自然不稳定系统的特性。
为我们进行新的课题研究提供了一个很好的参考平台。
目前,PID控制器或智能PID控制器很多,产品在实际生产中得到广泛应用,各大公司相继开发了具有PID参数自整定功能的智能调节器,PID控制器参数的调整通过自校正、自适应算法和智能化调整来实现。
不仅有用PID控制的温度、液位、流量和压力控制器,还有可以实现PID控制功能的可编程控制器,以及PID控制的PC系统等。
可编程控制器是用闭环控制来进行PID控制,可编程控制器直接与ControlNet相连,例如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。
1.2国内外的研究现状
关于倒立摆系统的研究始于20世纪50年代,初期主要研究直线倒立摆的建模和摆杆的平衡控制(镇定问题),伴随着现代控制理论的不断发展,尤其是多变量线性系统理论及最优理论的发展,80年代后期模糊控制理论被用来控制倒立摆,90年代初神经控制倒立摆的研究发展迅速,它以自学习为基础,信息处理则采用了一种全新概念。
此后,倒立摆的研究取得了许多实质性的突破。
国内的有关倒立摆系统的研究开始比较晚,1982年西安交通大学实现了对二级倒立摆的控制,他们采用最优控制和降纬观测器。
1983年国防科技大学实现了对一级倒立摆系统的控制;1987年上海机械学院完成了一、二级倒立摆系统的研究,实现了在倾斜轨道上对二级倒立摆的控制。
1994年张明廉领导的课题组实现了由单电机控制的三级倒立摆。
1995年任章等用振荡控制理论改善倒立摆系统的稳定性。
1996年翁正新等用H∞状态的反馈控制器对二级倒立摆系统进行仿真控制,次年他们又用相同的方法实现了二级倒立摆在倾斜轨道上的仿真控制。
1998年蒋国飞等将Q学习算法和BP算法神经网络结合,对状态未离散化的倒立摆的无模型学习控制。
2001年单波等用基于神经网络的预测控制算法对倒立摆的控制进行了仿真。
目前我国的倒立摆研究已是世界尖端水平,李德毅最早提出了“隶属云”,成功用该理论对三级倒立摆进行智能控制;李洪兴也对三级倒立摆进行智能控制。
2002年李洪兴用变论域自适应模糊控制算法,对四级倒立摆实物系统进行控制。
次年,复杂系统智能控制实验室用变论域自适应控制理论对平面运动二级倒立摆实物系统进行控制,2003年他们率先对平面三级倒立摆实物系统进行控制。
国外学者早在上世纪60年代就开始了对倒立摆系统的研究。
1966年Schacfer等运用Bang-Bang控制原理实现了对一级倒立摆的稳定控制。
1972年Sturegeon和Loscutoff运用极点配置法并使用了全纬观测器对二级倒立摆设计了模拟控制器。
1976年S.Mori等设计的前馈-反馈负荷控制器实现了一级倒立摆的稳定控制,并设计出比例微分控制器。
1977年日本K.Furuta领导的研究组稳定了二维一级倒立摆,次年他们运用微机处理实现了二级倒立摆的控制,1980年他们对在倾斜轨道上的二级倒立摆进行了稳定控制,四年后他们又运用最优状态调节器对双电机的三级倒立摆进行控制,并且实现了二级平面倒立摆的仿真与控制。
同年,Wattes研究LQR(LinearQuadraticRegulator)方法控制倒立摆,并验证了改变性能矩阵Q和R可以得到不同的状态反馈量,从而产生不同的控制效果。
1988年CharieswW.hndorson在运用自学习模糊神经网络控制了一级倒立摆,Furuta与Fradkov等分别在1992年和1995年提出了变结构控制与无源性控制。
而INiklund等用李亚普诺夫方法成功控制环形一级倒立摆。
日本学者在1997年成功控制平面倒立摆。
与此同时,瑞士的BernhardSprenger等也成功控制直线平面倒立摆的运动机械臂[1]。
1.3本文的主要内容
本文主要研究一级倒立摆系统PID控制器的设计,首先对该系统运用牛顿-欧拉法进行力学分析并建立数学模型。
然后通过用Z-N整定或者试凑法来调节Kp、Ki、Kd三个参数来控制一级倒立摆,最后用Matlab下的Simulink来进行仿真,并对曲线图进行比较分析。
其余章节安排如下:
本文第二章详细介绍了PID控制的原理,以及多种PID参数整定方法。
同时也介绍了PID控制器的特性。
第三章主要是一级倒立摆数学模型的建立和倒立摆的控制方法。
第四章主要对PID控制系统进行仿真,通过响应曲线的分析,比较两种参数整定方法的不同,找出两种方法的差异。
最后总结全文。
2PID控制器参数整定法
2.1PID控制器的原理
在实际的工程中,应用最多的调节器控制规律为PID(ProportionIntegrationDifferentiation)控制。
PID控制器的历史已有70余年,它的稳定性好、结构简单、可靠性高、操作方便,是当今工业控制的主要技术。
在受控对象的结构和参数没有掌握或者它的数学模型无法精确建立的情况下,控制理论的一些技术无法使用,那么系统的控制器的结构和参数就需要依靠工程经验和现场调试确定。
控制系统中,控制器最常用是PID控制。
PID控制系统原理框图如下图1.1所示。
图1.1PID控制系统原理框图
其中r(t)为给定值;y(t)为实际输出值;e(t)为偏差。
PID控制是线性控制方法。
偏差e(t)=r(t)-y(t)。
然后把偏差e(t)分别进行比例、积分和微分的运算,把三个结果相加,就是PID控制器的控制输出u(t)。
在连续的时间域中,PID控制器的算法的公式如下:
其中Kp为比例系数,Ti为积分时间常数;Td为微分时间常数
PID控制器主要由比例环节(Proportion)、积分环节(Integration)和微分环节(Differentiation)三个环节组成。
比例环节调节作用:
成比例反应偏差,偏差一旦产生,将立即进行调节作用,减少偏差。
比例作用越大,调节越快,减少误差,但是比例过大,也会使系统的稳定性下降。
积分环节调节作用:
消除静差,提高系统的无差度。
只要有误差,积
分调节就进行,直至无差,积分调节停止后,输出常值。
积分作用的强弱与积分时间常数Ti有关,Ti越小,积分作用就越强。
反之积分作用越弱,积分调节使系统的稳定性下降,动态响应速度变慢。
积分作用常与另外两种调节规律相结合,组成PI调节器或PID调节器。
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样即便误差很小,积分项随着时间的增加而变大,使控制器的输出增大从而减小稳态误差直至零。
因此,选用比例加积分(PI)控制器,可以使系统在稳态后过程中无稳态误差。
微分环节调节作用:
主要反映偏差信号的变化趋势(变化速率),调节误差的微分输出,误差突变时,能及时控制,并能在误差偏差信号变的更大之前,在系统中引入一个的早期修正信号,加快系统动作速度,减少调节时间。
控制器的输出与输入误差信号的微分成正比。
在调节过程中伴随着克服误差所出现振荡及失稳等情况。
由于较大惯性环节或滞后环节抑制误差,其变化一直落后于误差的变化。
抑制误差的作用变化“超前”就可以有效解决这一问题,误差为零,抑制误差的作用也是零。
在控制器中仅引入比例环节是远远不够的,比例环节放大误差的幅值,而我们需要增加微分环节,因为由它能推测出误差变化趋势。
具有比例、微分环节的控制器,能够提前使抑制误差的控制作用等于零,避免了被控量的严重超调。
比例、微分、积分的组合就可以优化自动控制系统的控制性能。
下面分别介绍Z-N整定法、工程整定法、经验法、凑试法、模糊自适应PID控制器参数整定算法、改进的遗传算法PID控制器设计、基于克隆选择算法的PID控制器参数整定等PID参数整定方法。
2.2PID参数整定方法
2.2.1Z-N整定方法
常规Z-N整定方法于1942年由Ziegler和Nichols提出的。
基于受控过程的开环动态响应中某些特征参数进行的参数整定,其经验整定公式是基于带有延迟的一阶惯性模型的提出的,对象模型如下:
其中K为放大系数;为惯性时间常数;L为延迟时间。
提取特征参数的方法有以下两种。
(1)通过试验方法和受控对象的动态仿真得到的开环阶跃响应曲线。
如图2.1所示。
设
拐点P是特征曲线(阶跃响应)的,切线AB是切于P点,可以从图2.1中直接求出过程的特征参数
图2.1切线法求取特征参数
如果用切线法计算特征参数的话,则很难做到精确自动化,除此之外,我们还可以采用面积法,如图2.2所示。
图2.2面积法求特征参数
设
,其中:
(2.1)
(2.2)
(2.3)
实验得到阶跃响应后由以上三式可得
,
,
(2.4)
其中e为自然对数的底,取得特征参数之后,再用由Z-N提供的PID参数整定的经验公式,如表2.1所示,其中
表2.1Ziegler-Nichols整定公式
(一)
Kp
Ki
Kd
P
1/a
—
—
PI
0.9a
3L
—
PID
1.2/a
2L
L/2
开环实验决定了上述整定算法的抗干扰能力差。
(2)继电反馈自动整定方法如图2.3所示。
图2.3继电反馈自动整定结构图
在继电反馈下观测受控对象的极限环振荡,再由极限环的特征确定过程的基本性质,计算得出PID控制器的参数。
系统具有测试模态和调节模态。
如果开关处于T侧,系统为测试模态,系统的特征参数:
临界振荡角频率wc(或临界振荡周期Tc=2πwc)和临界振荡增益Kc由继电非线性环节测试,再把开关处于A侧,系统为调节模态,根据Kc和wc计算的出PID控制器的参数,并进入控制过程。
若系统的测试变化,那么重新进入测试模态测试,测试完成后继续调节模态继续进行控制。
同样Ziegler和Nichols提供了特征参数的经验整定公式,如表2.2所示。
表2.2Ziegler-Nichols整定公式
(二)
Kp
Ki
Kd
P
0.5Kc
—
—
PI
0.4Kc
0.8Kc
—
PID
0.6Kc
0.5Kc
0.12Tc
由于该方法的结果由继电反馈的闭环实验计算求得,所以对于扰动并不灵敏,相对于开环实验来说提高了测算的精度。
但是还是有其缺点,在工业控制中,实际对象的数学模型并不是都能简单建立,传统的Z-N整定参数很容易在设定点附近产生较强的振荡,且超调量较大。
2.2.2工程整定法
PID数字调节器的参数,除了比例系数Kp,积分时间Ti和微分时间Td外,还有1个重要参数即采样周期T。
包括采样周期T的选择确定、Kp,Ti,Td的选择方法等步骤
(1)采样周期T的选择确定
从理论上讲,采样频率越高,失真越小。
但是对于控制器来说,因为调节计算依靠偏差信号来进行,所以采样周期T越小,偏差信号也越小,此时计算机无法进行调节;但是如果采样周期T过长,就会出现误差。
因此采必须综合考虑样周期T时间。
采样周期的选择方法有计算法和经验法。
计算法因为被控对象各环节时间常数不好确定,相对来说比较复杂;所以工程上很少使用。
经验法则是一种试凑法,根据被控对象的特点以及控制工作实践中积累的经验来选择一个采样周期T,然后进行试验,再接着改变T,直到满意为止。
(2)Kp,Ti,Td的选择方法
1)扩充临界比例度法
此种方法是种简易的工程整定方法,整定Kp,Ti,Td的步骤如下:
选取最短采样周期Tmin,然后把Tmin输入到计算机程序里,用比例环节控制,缩小其比例度直至系统产生了等幅振荡[2]-[3]。
此时比例度为临界比例度Su,振荡周期为临界振荡周期Tu。
选择控制度为:
(2.5)
当控制度为1.05时,就表明模拟方式的效果与数字控制的方式效果一致。
再由计算度,查表2.3可求出Kp,Ti,Td。
表2.3扩充临界比例度法整定参数表
控制度
控制规律
参 数
T
Kp
Ti
Td
1.05
PI
PID
0.03Tu
0.014Tu
0.53Su
0.63Su
0.88Tu
0.49Tu
/
0.14Tu
1.2
PI
PID
0.05Tu
0.43Tu
0.49Su
0.47Su
0.91Tu
0.47Tu
/
0.16Tu
1.5
PI
PID
0.14Tu
0.09Tu
0.42Su
0.34Su
0.99Tu
0.43Tu
/
0.20Tu
2.0
PI
PID
0.22Tu
0.16Tu
0.36Su
0.27Su
1.05Tu
0.4Tu
/
0.22Tu
2)扩充响应曲线法
如果系统的动态特性曲线已知,就用和模拟调节方法同样的响应曲线法整定,整定步骤如下:
首先切断微机调节器,让系统手动进行工作,当在给定值处系统处于平衡后,加入阶跃输入。
此时仪表记录了被调参数在此阶跃作用下的变化过程曲线。
如图2.4所示。
图2.4阶跃信号下的过程曲线
做切线于曲线最大斜率处,求出滞后时间t,对象时间常数τ和它们比值τ/t[2]。
根据所求得的τ,t和τ/t值,查表2.4求得值Kp,Ti,Td。
表2.4扩充响应曲线法的整定参数表
控制度
控制规律
参 数
T
Kp
Ti
Td
1.05
PI
PID
0.1t
0.05t
0.84τ/t
1.15τ/t
0.34t
2.0t
/
0.45t
1.2
PI
PID
0.2t
0.15t
0.78τ/t
1.0τ/t
3.6t
1.9t
/
0.55t
1.5
PI
PID
0.50t
0.34t
0.68τ/t
0.85τ/t
3.9t
1.62t
/
0.65t
2.0
PI
PID
0.8t
0.6t
0.57τ/t
0.6τ/t
4.2t
1.5t
/
t
2.2.3经验法
在实际生产过程中,被调对象的动态特性很难确定,即使确定的话,但是其工作量大,计算困难,其结果也与实际相差很大。
因此,在实际生产过程中采用的多是经验法。
根据各调节作用的规律,经过闭环试验,反复试凑,直至试出最佳调节参数。
在现场试验好微机调速器参数后,然后选出最优参数。
厂家有规定的一定范围的参考值,是由理论计算得出来的。
选择出最优参数,必须在生产现场进行试验做记录曲线。
2.2.4试凑法确定PID调节参数
试凑法是模拟运行系统的阶跃响应曲线,根据调节参数对系统响应的影响,反复试凑参数,达到满意的响应,从而确定PID的调节参数。
比例系数Kp越大系统的响应越快,越有利于减小静差。
但是过大的比例系数会使系统超调量过大,产生振荡,稳定性变差。
Td越大系统响应越快,超调量越小,稳定性越高,但是抗干扰能力越弱弱。
在试凑时,参考以上调节参数对控制过程的影响趋势,对调节参数进行比例、积分、微分的整定步骤。
其具体步骤如下:
比例控制作用由小变大,观察各次响应,直至响应曲线的反应快、超调小。
如果比例环节控制的稳态误差不能满足要求,那么就要引入积分控制。
先把比例系数减小到原来的50~80%,然后置积分时间于较大值,观察响应曲线。
继续减小积分时间用来加大积分作用,再接着调节比例系数,反复试凑直至响应令人满意,最后确定比例环节与积分环节的参数。
若只有PI两个单元的控制消除了稳态误差,但是系统的动态过程无法让人满意的话,那就加入微分控制,从而构成PID三个单元的控制。
选取微分时间Td=0,调节Td变大,与此同时改变比例系数和积分时间,反复试凑直至获得了符合要求的PID控制参数和满意的控制效果。
在整定中调节参数的选定不是惟一的。
比例、积分和微分三部分作用是互相影响。
只要被控制过程的主要性能指标达到设计要求,那么比例、积分和微分参数也就确定了。
表2.5提供一些常见的调节器参数选择范围。
表2.5常见被调量PID参数经验选择范围
被调量
特点
参数
Kp
Ti/min
Td/min
流量
时间常数小,并有噪声,故Kp比较小,Ti较小,不用微分
1~2.5
0.1~1
温度
对象滞后较大,常用微分
1.6~5
3~10
0.5~3
压力
对象滞后不大,不用微分
1.4~3.5
0.4~3
液位
有静差时,可以不用积分和微分
1.25~5
2.2.5模糊自适应PID控制器参数整定算法
该算法基于PID算法,首先计算当前系统误差e以及误差变化率ec,然后使用模糊规则来模糊推理,再对照模糊矩阵表不断调整[10]。
PID控制器的设计核心就是总结实际操作经验和现场工程设计人员的技术知识,构建对Kp、Ki、Kd分别整定的模糊控制表。
建立好控制规则表后,将当前系统的误差e和误差变化率ec变化范围定义为模糊集上的论域,
e,ec={-5,-4,-3,-2,-1,