碳纤维复合材料在航空航天领域相关发展.doc
《碳纤维复合材料在航空航天领域相关发展.doc》由会员分享,可在线阅读,更多相关《碳纤维复合材料在航空航天领域相关发展.doc(23页珍藏版)》请在冰豆网上搜索。
碳纤维复合材料在航空航天领域的发展浅析
咱们分航空和航天两个方面,对CFRP的应用,略加介绍。
这篇的很多技术术语,都在前文中介绍过。
您有了那些铺垫,再读下去,会觉得没那么生涩。
还会因为知道了前因后果,感悟得更多一点所谓外行看热闹,内行看门道。
说到应用,国外的料大家尽管爆,国内产品公开的信息不多,因此兵器迷所知有限,只能给大家上个小菜——所有国内资料都来自互联网官方报道和公开出版物,并注明了相关来源。
额来坛子的目的,第一是学习,第二是分享,第三是科普。
一、航空方面的CFRP应用
业内一般认为,碳纤维复合材料在军用航空方面的应用大体上可以分为三个阶段(也有按四个阶段分的,差异不大)。
民机对安全性、经济性、可靠性要求高于军机,因此在应用上更加保守和延后,但也大体追随了军机的步伐。
在此一并介绍。
第一阶段——非承力结构:
20世纪60-70年代:
由于1公斤CFRP可以大体替代3公斤铝合金,性能满足要求,因此开始用于非承力结构,如舱门、前缘、口盖、整流罩等尺寸较小的部件。
对于民机,除了上述应用外,机舱大量的内饰也会用到复合材料,但其中有很多是芳纶或者玻璃纤维复材,这里不赘述。
国内方面:
从难度上说,非承力结构是航空复材的小case,但是应用面却最广泛。
国内在技术上已无大的障碍,基本达到了国外类似的水平,需要的是大规模普及。
相信ARJ21,C919和运20等大平台和众多无人机小平台定型运营后,能够为此提供广阔的应用空间。
这些一般应用,大多用便宜的大丝束产品就够了;而T300以上的产品,贵得离谱,好钢用在刀刃上,于是大多用在承力结构上。
第二阶段——次承力结构:
20世纪70-80年代:
随着力学性能的改善与前期应用的效果提高了人们的信心,CFRP逐步扩展到飞机的次承力结构,即垂尾、平尾、鸭翼、副襟翼舵面等受力较大、尺寸较大的部件。
其中,1971年美国F-14战斗机把纤维增强的环氧树脂复合材料成功应用在平尾上,是复合材料史上的一个里程碑事件。
波音B777也将CFRP应用于垂尾、平尾等多处部件,共用复合材料9.9吨,占结构总重的11%。
国内方面:
中国将CFRP用于军机的舵面和翼面,也已经开始成熟。
根据《玻璃钢》等杂志的公开报道,早在“六五”期间,沈阳飞机设计所、航空材料研究院和沈阳飞机厂共同研制歼击机复合材料垂尾壁板,比原铝合金结构轻21kg,减重30%。
北京航空工艺研究所研制并生产的QY8911/HT3双马来酰亚胺单向碳纤维预浸料及其复合材料已用于飞机前机身段、垂直尾翼安定面、机翼外翼、阻力板、整流壁板等构件。
歼轰7-A战机采用了CFRP平尾。
2009年建国60周年国防成就展上,报道了歼10在鸭翼、垂尾、襟副翼、腹鳍等所有7个舵面和腹鳍采用了CFRP材料,这与国外这一阶段的发展水平基本相当。
2011年通用航空大会上披露,即将定型的猎鹰L15高教机也采用了复材的机头罩、方向舵和垂尾,其中舵面是CFRP。
在民机方面,ARJ21新支线飞机的复合材料技术水平大体达到了这样一个水平,算是开了个头,但大规模应用尚需时日。
图1国内某机型基于“π”形接头盒段结构成型的CFRP垂直安定面
图2:
猎鹰L15采用了T300CFRP材料制作的尾翼舵面
国内CFRP次承力构件的广泛应用,与T300生产进程密切相关。
材料的国产化,产量的扩大化和价格的低廉化,分别为CFRP次承力构件的应用提供可能性、适用性和经济性。
从而最终推动CFRP次承力构件成为国产军民航空器的标配。
这一阶段的材料和工艺,都是我们用T300和手工铺叠工艺能够达到的,因此未来的发展相对有把握。
但如果制件再大些,承力再大些,就会涉及主承力结构了。
第三阶段,从上世纪80年代至今,随着高性能碳纤维和预浸料-热压罐整体成型工艺的成熟,CFRP逐步进入机翼、机身等受力大、尺寸大的主承力结构中。
美国原麦道飞机公司于1976年率先研制了F/A-18的复合材料机翼,把复合材料的用量提高到了13%,成为复合材料史上的又一个重要里程碑。
后期更采用自动铺丝技术为FA-18E/F制造CFRP的12块机身蒙皮,10块进气管蒙皮,4块水平尾翼蒙皮。
F16战斗机BLOCK50之后也开始采用CRPR复合材料机翼。
F22战机的复合材料用量已经提高到结构重量的22%。
目前西方国家军机上复合材料用量约占全机结构重量的20%~50%不等。
民机方面,波音777采用全复合材料尾翼,其翼面及翼盒构件,均采用自动铺带技术制造。
空客A330/A340飞机长9m,宽2m,重200kg的大型蒙皮壁板。
A380的后机身所有蒙皮壁板19段,22%的机身重量是CFRP。
尤其是A380的8*7*2.4米中央翼盒,重8.8吨,CFRP就用了5.5吨,比金属材料减重达1.5吨,其燃料经济性相当可观。
这方面的先行者,是波音公司的B787“梦想”飞机,复合材料应用率50%。
CFRP广泛应用在机翼、机身、垂尾、平尾、机身地板梁、后承压框等部位,同时是第一个同时采用CFRP复合材料机翼和机身的大型商用客机,其23%的机身均使用了自动铺丝机制成的CFRP材料。
最值得关注的,是其机身:
787机身工艺采用直径5.8m的成型模胎安装在一旋转夹具上沿长轴转动,先铺长桁然后铺皮,形成外表光滑的变厚度的壳体以及共固化的桁条组成的机身段,经过热压罐固化后,取下模胎。
这一工艺可以代替由上百块蒙皮壁板、加强筋及长桁、上千个紧固件组成机身的工艺,见下图。
图3:
波音787直径5.8米整体成型CFRP框段
在研机方面,波音公司X-45系列飞机复合材料用量达90%以上,诺斯罗普·格鲁门公司的X-47系列飞机也基本上为全复合材料飞机。
看完波音的系列CFRP主承力结构产品,兵器迷想问问某些网友,凭哪条说美国是产业空心化,只剩下金融和房地产了?
人家居安思危,几句谦虚的自拙之语,被刚进入工业化不久的我们如获至宝般的照单全收,再加以主观放大,作为沾沾自喜的根据,实在不足为取啊。
国内方面
根据中广网的公开报道,2012年12月,中航工业西飞公司向中国商用飞机有限责任公司(简称中国商飞)交付了C919大型客机中央翼、襟翼及运动机构部段,这是C919大型客机七大部段中难度最大、工作量最大的两个部分。
这两个部段尺寸大、结构复杂、外形公差要求高,尤其是国内民机最长尺寸、长达15米的襟翼缘条加工,技术难度非常大。
西飞突破了复合材料大型成型模具设计制造技术、复合材料构件预装配变形控制技术等多项技术难关,整个研制过程全部采用先进的三维数字化设计、传递与制造,中央翼部段除1号肋是金属件外,全部采用了先进的中模高强碳纤维/增韧环氧树脂复合材料制造。
这是国内首次在固定翼飞机最重要的主承力结构件上使用复合材料,代表了中国制造的碳纤维航空复合材料应用的最高水平。
图4国内基于T形接头共固化/胶接一体成型工艺研制的盒段件。
图5国内采用CFRP生产的某机型纵横向加筋机身壁板。
注意,图5的产品仍然面积较小,需要通过机械加工多块拼接形成大型壁板。
而波音787可以整体成型超长超宽的壁板,覆盖在两个大型工艺分离面(核心主框段)之间,如5.8m×7m的47段和4.3m×4.6m的48段CFRP壁板。
我们能做出来786这么大的壁板吗?
回答是:
能。
这位眼睛瞪圆了——那为什么不用呢?
其实,国内C919大飞在一开始,也曾雄心勃勃,想做类似波音787这样的大型整体壁板.但我们的工艺水平不成熟,虽然能做出来,却无法控制批次质量的稳定性.废品率高,成本自然下不来。
C919是商飞啊,不是技术验证机,安全性和经济性都是一票否决,所以琢磨了很久,还是放弃了。
仍然采用分块成型拼接吧。
差强人意,亦属无奈。
为了学习CFRP大型构件整体成型的新技术、新工艺,哈飞复合材料公司与外方合作伙伴一起,共同进行C919的部件开发。
下图6展示的,就是哈飞复材公司参与制造的C919机尾框段——在2.4米的长度内,直径从2米平滑过渡到1.2米,一次整体成型,是目前公开所见国内合作制作的最大体积整体成型CFRP制件。
见图6
图6:
C919机尾76-81框的CFRP整体成型框段
CFRP主承力结构件,对T700,T800等高性能军用碳纤维生产,以及大型复材整体成型技术提出了更高需求。
国内在这两方面又都存在短板甚至空白。
因此大多数应用是探索性,合作性和阶段性的。
在短期内,我们尚无法做到主承力结构CFRP的大规模应用。
对此,正确的态度应当是:
学而时习之。
中国人有差距,不可怕。
咱学,咱追,一定有一天咱超——就像空警2000一样。
可怕的是妄自菲薄和夜郎自大两种极端心态。
这样的心态,距离事实很远;距离成功,那是无限远。
CFRP三个阶段的应用介绍完了,咱们再看看——
直升机、旋翼机、风扇叶片等其他方面
包括CFRP在内的先进复合材料的用量甚至更大。
如V-22鱼鹰倾转旋翼机,其结构的50%由复合材料制成,包括机身、机翼、尾翼、旋转机构等,共用复合材料3000多千克,其中很大一部分是CFRP。
V-22的整体后机身,原由9块手工铺叠的壁板装配构成,后改为自动铺丝工艺整体成型,减少了34%的紧固件,53%的工时,降低了90%废料率。
自动铺丝技术同时应用于储油箱、旋翼整流罩、主起落架舱门。
已经下马的“科曼奇”(RAH-66)共使用复合材料50%,欧洲最新批次的“虎”式武装直升机结构部件的复合材料用量高达80%,接近全复材结构。
国内方面:
2011年国际通用航空大会披露,我国与法国、新加坡合作研制的轻型直升机EC120的机身、垂尾、水平安定面、尾翼、前舱等结构均由CFRP等复合材料制成。
在军机方面,近年来所有的国产直升机旋翼都是多维编制的CFRP复材叶片,金属旋翼叶片已经完全淘汰。
报载:
复材叶片和先进旋翼机构,已经成为中国直升机整体短板下不可多得的优势点,水平基本与国外看齐——歼20、武直10、辽宁号这些平台类的突破固然可喜,而直升机叶片这样长期困境中的点滴进步,也同样令人感动。
既然说起叶片,再唠叨两句航空涡扇发动机。
大家知道,航发的风扇叶片,大多采用钛合金。
金属叶片有一个弱点,就是振动阻尼性能较差,高速旋转时容易震颤,而且不易衰减。
而且如果叶片本身已经有微小裂纹,就会在这种持续震颤中,引发裂纹由内向外快速扩张,在极短时间内造成叶片断裂。
这是一种比共振更加危险的振动现象。
因此,有些风扇就在每个叶片的两侧加一个凸台,专业术语称为“凸肩”。
建国60周年空军成就展上披露,在歼11系列的AL31FN和WS-10A发动机进气口,都有这样的凸肩(见下图)。
这样,叶片全部高速旋转时,各凸肩形连起来成了一个加强环,增加了叶片刚度。
而且,叶片是依次叠加的,每个凸肩“顶”着前面一个叶片,有效降低了阻尼震颤。
但这样做的后果,是凸肩增加了叶片厚度和重量,同时增加了叶片数量,降低了发动机的推重比。
图7:
歼10发动机进气口的凸肩(红圈处)
而CFRP材料制成的风扇叶片,由于纤维多层交叉铺贴,材料本身“各向异性”性能优越,裂纹生长缓慢,再加上振动衰减率比钛合金快5-6倍,因此可以取消叶片凸肩。
2010年珠海航展披露,GE和法国斯奈克玛为C919大飞联合研制的发动机LEAP-X,就采用了CFRP三维碳纤维编织物整体成型的风扇叶片,不但重量减轻了50%,叶片数也减少了一半。
国内发动机风扇叶片,目前只看到涡桨发动机的复合叶片,尚未见到实装涡扇发动机使用CFRP的报道。
2012年珠海航展上的CJ-1000A发动机是我国第一款商用涡扇航空发动机在研产品,据称采用了CFRP宽弦复合大弯掠风扇叶片。
让我们假以时日,拭目以待吧。
在2011年中国国际通用航空大会上,“天弩”、“风刃”等无人机采用了全机结构CFRP材