基于MATLABSIMULINK的交流电机调速系统建模仿真.docx

上传人:b****7 文档编号:25769666 上传时间:2023-06-13 格式:DOCX 页数:18 大小:261.27KB
下载 相关 举报
基于MATLABSIMULINK的交流电机调速系统建模仿真.docx_第1页
第1页 / 共18页
基于MATLABSIMULINK的交流电机调速系统建模仿真.docx_第2页
第2页 / 共18页
基于MATLABSIMULINK的交流电机调速系统建模仿真.docx_第3页
第3页 / 共18页
基于MATLABSIMULINK的交流电机调速系统建模仿真.docx_第4页
第4页 / 共18页
基于MATLABSIMULINK的交流电机调速系统建模仿真.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

基于MATLABSIMULINK的交流电机调速系统建模仿真.docx

《基于MATLABSIMULINK的交流电机调速系统建模仿真.docx》由会员分享,可在线阅读,更多相关《基于MATLABSIMULINK的交流电机调速系统建模仿真.docx(18页珍藏版)》请在冰豆网上搜索。

基于MATLABSIMULINK的交流电机调速系统建模仿真.docx

基于MATLABSIMULINK的交流电机调速系统建模仿真

控制系统仿真

姓名:

班级:

学号:

成绩:

2012年11月02日

设计题目

基于MATLAB/SIMULINK的交流电机调速系统建模与仿真

设计内容和要求

本课题主要运用MATLAB-SIMULINK件中的交流电机库对交流电动机调速系统进行直接转矩控制仿真,由仿真结果图直接认识交流系统的机械特性。

当今交流电机以其卓

越优势被应用于各个行业。

口从解决了交流电动机调速方案中的关键问题交流调速系统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统。

目前交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可以四彖嗫运行尊优异特性其稳、动态特性沟町以与也流调速系统相媲英。

随着电力电子变流技术和交流电机控制理论的发展,出现了许多新型变流装置和交流电机的调速控制方法。

众所周知,异步电动机是一个高阶、非线性、强耦合的多变量系统,再加上在变流装置的非正弦供电条件下运行,使经典的交流电机理论和传统的控制系统分析方法不能完全适用于现代交流调速系统。

采用计算机仿真的方法来分析研究交流电机及其调速是解决这类工程问题的一种有效工具。

要求:

利用目前国际上最流行的仿真软件之一MATIASSIMULINK建立一个通用的仿真模型。

然后用到直接转矩控制系统中去,对该系统进行仿真研究。

主要早节

第一章引言

1.1研究背景

直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动

态性能。

在相当长时期内馬性能的调速系统几乎都足直流调遠系统。

尽管如此直流调速系统却解决不了直流也动机本灯的换向和在恶劣坏境卞的不适应问題同时制造大容Ah高转速及高电压出流电动机也1分困难这就限制了自流拖动系统的进•步发展。

交流电动机自1985年出现后山丁没有理想的调速方案囚而长期用于恒速拖动领域。

20世纪70年代后国际上解决了交流电动机调速方案屮的关键问题使得交流禍速系统得到」迅速的发展现右■•交流调速系统已逐步取代大部分直流调速系统。

目前交流週速已貝备了宽调速范围、高稳态精度*快动态响应「爲工作效率以及可以四象限运行等优异特性其稳、动态特性均可以与直流调速系统相媲美。

与直流调速系统相比交流调速系统貝令以卜•特点

1容量大

2转速高且耐高压

3交流电动机的体积、重量、价格比同等容量的直流电动机小且简单、经济可靠、惯性小

4交流电动机环境使用性强.■...

5高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标

6交流调速系统能显著的节能从各方面看.一•’•._

系统。

1.2MATLAB/SIMULIN软件的优势:

计算机仿真技术在交流调速系统的应用..•••_1:

为方便’传统的汁算机仿虫软件包用微分方程和琏分方程建模其直观性、灵活性差编程量大操作不便。

随着•些大型的爲性能的计算机仿真软件的出现实现交流调速系统的实时仿真可以较容易地实现[1]。

如matlab软件已经能够在计算机中全过程地仿真交流调速系统的整个过程。

matlab语言非常适合于交流调速领域内的仿真及研究能够为某些问题的解决带来极大的方便并能显著提高工作效率。

随着新型计算机仿真软

件的出现交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步

[2][3]o

第二章交流调速系统:

2.1交流调速系统原理与特性

交流电机包括异步电动机和同步电动机两大类。

对交流异步电动机而言奈證迟麹

n=60f(1-s)/p(r/min)2-1

从转速公式可知改变电动机的极对数p犬空爲「卞伏二駅f以及改变转率s都可

达到调速的目的。

对同步电动机而言,同步电动机转速为:

n=60f/p(r/min)2-2

由于实际使用中同步电动机的极对数p是固定的,.HI:

VVVF

调盘(即通常说的变频调速)。

运用到实际中的交流调速系统主要有变级调速系统、串级调速系统、调压调速系统、变频调速系统[4]。

(1)变极调速系统

调旋转磁场同步速度的最简单办法是变极调速。

通过电动机绕组的改接使电机从一种极数变到另一种极数从而实现异步电动机的有级调速。

变极调速系统所需设备简单价格低廉工作也比较可靠但它是有级调速一般为两种速度,三速以上的变极电机绕组结构复杂应用较少。

变极调速电动机的关键在于绕组设计以最少的线圈改接和引出头以达到最好的电机技术性能指标。

(2)串级调速系统

绕线转子异步电动机串级调速是将转差功率加以利用的一种经济、高效的调速方法。

改变转差率的传统方法是在转子回路中串入不同电阻以获得不同斜率的机械特性从而实现速度的调节。

这种方法简单方便但调速是有级的不平滑并且转差功率消耗在电阻发热上效率低。

自大功率电力电子器件问世后采用在转子回路中串联晶闸管功率变换器来完成馈送转差功率的任务这就构成了由绕线异步电动机与晶闸管变换器共同组成的晶闸管串级调速系统。

转子回路中引入附加电势不但可以改变转子回路的有功功率一一转差功率的大小而且还可以调节转子电流的无功分量即调节异步电动机的功率因数。

(3)调压调速系统

异步电动机电机转矩与输入电压基波的平方成正比,所以改变电机端电压(基波)可以

改变异步电动机的机械特性以及它和负载特性的交点来实现调速。

异步电动机调压调速

是一种比较简单的调速方法。

在20世纪50年代以前一般采用串饱和电抗器来进行调速。

近年来随着电力电子技术的发展多采用双向晶闸管来实现交流调压。

用双向晶闸管调压

的方法有两种一是相控技术、二是斩波调压。

采用斩波控制方法可能调速不够平滑所以在异步电机的调压控制中多用相控技术。

但是采用相控技术在输出电压波形中含有较大的谐波会引起附加损耗产生转矩脉动[5]。

(4)变频调速系统

在各种异步电机调速系统中效率最高、性能最好的系统是变压变频调速系统。

变压变频调速系统在调速时须同时调节定了电源的电压和频率在这种怙况H机械待性基本上平行移动转差功率不变它是当前交流调速的主要方向[6]。

调压调速系统的优点是

线路简单价格便宜使用维修方便本文主要针对交流调压调速系统进行MATLA仿真。

面对交流调压调速系统的原理及机械特性进行介绍。

2.2交流调速系统仿真模型

第三章直接转矩控制系统设计

3.1直接转矩控制系统的组成:

直接转矩控制充分利用电压型逆变器的开关特点,通过不断变化电压状态使定

子磁链轨迹为六边形或近似圆形,并通过零电压矢量的穿插调节来改变转差频率,以控制电机的转矩与磁链的变化,从而控制异步电动机的磁链和转矩按要求快速变化。

直接转矩控制系统调速的主题就是在于调节电动机的磁链和转矩的变化,电动机的输出转矩完全是按照输入转矩的设定。

(1)磁链、转矩观测器:

由电流、电压的采样值经过3/2变化按照电机数学模型计算出异步电机的定子磁链和转矩;

(2)磁链调节器:

为了控制定子磁链在给定值的附近变化,直接转矩控制系统采用两

点式控制,输出磁链控制信号;

(3)转矩调节器:

利用转速调节器输出的给定转矩,也是采用两点式滞环控制,输出

转矩控制信号,直接控制电机的转矩;

(4)开关状态选择单元:

根据定子磁链和转矩的控制信号以及定子磁链位置,输出合适的开关状态Sabc来控制逆变器驱动电机稳定运行。

直接转矩控制系统是建立在静止定子坐标系下的,首先异步电机定子相电压、相电

流的采样值经3/2坐标变换,得到:

•一一:

坐标下的分量,再按照异步电机的定子磁链和转矩模型计算出实际转矩Te和定子磁链’s的两个分量's,这样就可以计算出定子磁链幅值si和磁链位置户n|。

将测量得到实际转速和给定转速输入到转速调节器,转速调节器根据给定转速和实际转速的差值输出给定转矩T;。

将给定转矩T;和

*1*

T送入转矩调节器,得到转矩控制信号Ft,磁链调节器根据给定子磁链幅值ps|和转子磁链幅值卜s|的差值输出磁链控制信号Fo最后开关状态选择单元根据磁链控制信号F、转矩控制信号Ft和磁链位置户nI,查逆变器开关状态表,输出正确合理的开关状态来控制逆变器驱动电机正确运行。

3.2磁链调节

磁链的调节通过磁链滞环比较器实现。

滞环比较器如图3-2所示。

磁链误差为

'■s=[s|-「s|,将误差进行滞环比较,当误差超过允许值就进行电压切换,使误差控制在滞环宽度内。

调制规则为:

当s-「时,F=1,此时选择电压矢量使「s|增加;当丄'■s乞一「时

=0,此时选择择电压矢量使得「s|减小;当卜's|Jt时,F-:

不变,此时电压矢量不变。

图3-2磁链滞环调节器

磁链位置检测单元:

为了检测定子磁链的位置,将:

-:

坐标系分为六个区域:

(2冒)—册豐“(3-4)

其中N=1,2,3,4,5,6,每个区域占3角度,定子磁链s在第n区域,我们就称其在n区域。

转矩调节器的结构与磁链调节器的结构一样,也采用滞环比较器(见图3-3)输入量为转矩给定值T*及转矩观测值Te,输出量为Ft,2T为转矩滞环范围。

3.3转矩调节

转矩调节器的任务是实现对转矩的直接控制。

为了控制转矩,转矩调节器必须具备

两个功能:

(1)转矩调节器直接调节转矩;

(2)在调节转矩的同时,控制定子磁链的旋转方向,以加强转矩的调节。

通过电压矢量来控制定子磁链的旋转速度,从而改变定、转子磁链矢量之间的夹角,达到控制电机转矩的目的,用定转子磁链矢量积来表达异步电机的电磁转矩。

Te-Kmrs(t)*s(t))=Km‘s(t)‘r(t)sincs(t)/s(t)^K^s(trr(t)sim(t)(3-3)

在实际运行中要确保要保证定子磁链矢量的幅值为定值,使电动机的铁芯得到充分

的利用;转子磁链矢量的幅值由电动机带动的负载决定。

可以通过改变磁通角二(t)的

大小来改变电动机转矩的大小。

通过加载有效空间电压矢量,改变空间电压矢量,使空

间电压矢量的幅值更合理,定子磁链的转速大于转子磁链转速的大小使磁通角增大,从

而增加转矩;加载零电压矢量,控制定子磁链停止运行使磁通角变小,从而使转矩减小。

转矩调节器的控制规律为:

'■s逆时针旋转时:

*

若Te-Te-T时,则Ft=1;

*

若Te-Te-0时,则Ft=0;

__*

右0一Te-Te-T时,则Ft保持不变。

'■s顺时针旋转时:

*若Te-Te乞-T时,则Ft=_1;

*

若Te-Te-0时,则Ft=0;

*

若-厶T-Te-Te-0时,则Ft保持不变

 

 

 

图3-3转矩滞环调节器第四章异步电动机直接转矩控制系统的仿真4.1直接转矩控制系统仿真模型

由第二章知两相静止坐标系下的异步电机的电压方程

R^LsP0LmP00企50LmP

LmP«Lm企+LsP«Lm

LmLmP-心+L

 

(4-1)

磁链方程:

Lp

「Ls

0

|Lm

】0

0

Ls

0

Lm

Lm0]〔i/

0Lm

Lr0

0Lr

ira

 

4.2电压和电流的坐标变换模块电压的三相坐标/两相坐标的变换关系如式(4-3)所示:

11Uds'212

II=/—I一Uqs\3、丿3

10

12

电压2/3的变换关系:

-

Ua

Ub二

_Uc

10

21J3Uds

—I——I

322ILUqs

ij3

-2_2

图4-2电压坐标3/2变换仿真模块

4.3磁链、转矩控制模型

磁链控制采用两点式调节、转矩控制采用三点式调节

 

图4-4磁链控制器

SF

 

 

 

图4-5转矩控制器

4.4磁链幅值计算与区域判定模型

 

图4-6磁链幅值,磁链当前扇区判断模型

磁链幅值计算采用matlab函数,其表达式为Sqrt(u⑴A2+u

(2)A2)。

磁链当前所在扇区判定选用simulink的s一Funetion来实现。

4.3异步电动机直接转矩控制系统的仿真参数与结果

仿真电机参数如下:

额定功率为2.354KW,额定电压为380V,额定转速为1500r/min;转动惯量为0.09kgmZ,极对数为2,定子电阻为0.54。

,转子电阻为0.79。

,定子电感为2.smH,转子电感为2.smH,定转子互感为66.24mH,频率为工频50赫兹,取摩擦系数为0。

系统给定值如下:

给定磁链为0.5,给定转矩为30N-M,负载转矩为0N*M,给定直流电压为308V;给定磁链容差为0.01Wb,给定转矩容差为0.1N*M。

 

图4-8直接转矩控制系统的磁链轨迹

 

^EleclroniagnetictorqueTe[flxrn]>

-■

■\\

[:

■■■"■■■'fc''

:

:

:

!

・j・

1;:

i1

1:

"■■■■•■;[

■_i.

・bK8

~■

"■I

:

;:

■”

■p,■

?

"-:

ii

图4-9转矩响应波形

 

图4-10直接转矩控制系统的三相定子电流波形

 

图4-11直接转矩控制系统的定子电压波形

图4-12电动机相电压波形

通过图可以看出,采用直接转矩控制时,电机运行平稳,输出转矩脉动小,电机启动快,系统的转矩响应都比较快。

同时转矩的脉动从波形上看频率很高,对转矩变化跟

随比较好。

说明直接转矩控制系统的动态和稳态时的性能优良。

[1]薛定宇.丨’..—MATLAB语言[M]北底灣车灰逐马旗靶.

1998

[2]吴安顺.._[M]•比匸诃眾」〔八1999

[3]胡崇岳一.|'-.[M]「X:

工濾丄亡宦存汁一2000

[4]张少军,:

._'[M].:

D:

打」「去社2003

⑸林伟..1[J]:

m.NZ200134(12A)

134-138

[6]肖倩华,:

.1I[J]『违脅动2001⑷7-9

第五章总结与展望

直接转矩控制系统是通过直接控制逆变器的开关状态进而控制电动机的电压状态,

从而控制电动机的磁链和转矩,使磁链轨迹近似为圆形。

直接转矩控制系统的结构简单,性能良好,应用范围较大,具有很大的实用价值。

将现代控制理论应用于直接转矩控制技术的研究,无疑是这种新技术的发展趋势,也是当今值得深入研究的课题。

在做设计的时候我对异步电机数学模型做了一个简单的了解,了解了定子转子的磁

链的模型,查阅了大量的资料了解了直接转矩控制系统在运动控制中的优点与缺点。

利用Matlab软件对直接转矩控制系统进行仿真,验证了直接转矩控制理论的正确性。

随着现代科技的进步在研究直接转矩控制的时间加入现代的最新科技是提升生产力的必然选择。

直接转矩控制中定子电阻的观测、无速度传感器理论、电压矢量细化等研究的不断深入,与神经网络、模糊控制等新技术的融合,以及研究将直接转矩控制技术应用于同步电机的趋势,使得直接转矩控制在理论上日趋成熟。

相信在不久的将来直接转矩控制系统必将占据交流电机控制的主导地位。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 广告传媒

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1