ad类型.docx

上传人:b****7 文档编号:25675066 上传时间:2023-06-11 格式:DOCX 页数:15 大小:159.76KB
下载 相关 举报
ad类型.docx_第1页
第1页 / 共15页
ad类型.docx_第2页
第2页 / 共15页
ad类型.docx_第3页
第3页 / 共15页
ad类型.docx_第4页
第4页 / 共15页
ad类型.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

ad类型.docx

《ad类型.docx》由会员分享,可在线阅读,更多相关《ad类型.docx(15页珍藏版)》请在冰豆网上搜索。

ad类型.docx

ad类型

1. AD转换器的分类

    下面简要介绍常用的几种类型的基本原理及特点:

积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。

    1)积分型(如TLC7135)

    积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。

其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。

初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

    2)逐次比较型(如TLC0831)

    逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。

其电路规模属于中等。

其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

    3)并行比较型/串并行比较型(如TLC5510)

    并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。

由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

    串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。

还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。

这类AD速度比逐次比较型高,电路规模比并行型小。

    4)Σ-Δ(Sigma?

/FONT>delta)调制型(如AD7705)

    Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。

原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。

电路的数字部分基本上容易单片化,因此容易做到高分辨率。

主要用于音频和测量。

    5)电容阵列逐次比较型

    电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。

一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。

如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。

最近的逐次比较型AD转换器大多为电容阵列式的。

    6)压频变换型(如AD650)

    压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。

其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。

从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。

其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。

2. AD转换器的主要技术指标

    1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。

分辩率又称精度,通常以数字信号的位数来表示。

    2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。

    3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

    4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。

    5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

    6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。

 

    其他指标还有:

绝对精度(Absolute Accuracy) ,相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distotortion缩写THD)和积分非线性。

(1)INL(IntergerNonLinear,Linearityerror)精度。

理解为单值数据误差,对应该点模拟数据由于元器件及结构造成的不能精确测量产生的误差。

(2)DNL(DifferentialNonLinear)差分非线性值。

理解为刻度间的差值,即对每个模拟数据按点量化,由于量化产生的误差。

例子:

(1)INL,精度

比如12位ADC:

假设基准Vref=4.095V,那么1LSB=Vref/2^12=0.001V。

如果精度为1LSB,则它的单值测量误差0.001V*1=0.001V,比如测量结果1.000V,实际在1.000+/-0.001V范围。

如果精度为8LSB,则他的单值测量误差0.001V*8=0.008V,比如测量结果1.000V,实际在1.000+/-0.008V范围

(2)DNL,差分非线性值

比如12位ADC:

假设基准Vref=4.095V,那么1LSB=Vref/2^12=0.001V。

不考虑精度,即精度为0LSB,没有单值误差。

如果DNL=3LSB=0.001V*3=0.003V

假设A实际电压为1.001V,B实际电压为1.003V。

理论上A点读数1.001V/1LSB=1001,B点读数1.003V/1LSB=1003,B-A=2,B>A,但由于DNL=3LSB=0.003V,模拟数据间的量化误差有0.003V,那么B-A会在-1(2-3=-1)到+5(2+3=5)之间的某一个数,即不一定单调,如图分析:

3. DA转换器

    DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。

大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。

按数字输入值切换开关,产生比例于输入的电流(或电压)。

此外,也有为了改善精度而把恒流源放入器件内部的。

一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器,如果经电流椀缪棺缓笫涑觯蛭缪故涑鲂?

/FONT>DA转换器。

此外,电压开关型电路为直接输出电压型DA转换器。

    1)电压输出型(如TLC5620)

    电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内置输出放大器以低阻抗输出。

直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟,故常作为高速DA转换器使用。

    2)电流输出型(如THS5661A)

    电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:

一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。

用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。

此外,大部分CMOS DA转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。

当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了达算放入器的延迟,使响应变慢。

此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。

    3)乘算型(如AD7533)

    DA转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。

乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。

    4)一位DA转换器

    一位DA转换器与前述转换方式全然不同,它将数字值转换为脉冲宽度调制或频率调制的输出,然后用数字滤波器作平均化而得到一般的电压输出(又称位流方式),用于音频等场合。

4. DA转换器的主要技术指标:

    1)分辩率(Resolution) 指最小模拟输出量(对应数字量仅最低位为‘1’)与最大量(对应数字量所有有效位为‘1’)之比。

    2)建立时间(Setting Time) 是将一个数字量转换为稳定模拟信号所需的时间,也可以认为是转换时间。

DA中常用建立时间来描述其速度,而不是AD中常用的转换速率。

一般地,电流输出DA建立时间较短,电压输出DA则较长。

    其他指标还有线性度(Linearity),转换精度,温度系数/漂移。

 

1. AD转换器的分类

    下面简要介绍常用的几种类型的基本原理及特点:

积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。

    1)积分型(如TLC7135)

    积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。

其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。

初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

    2)逐次比较型(如TLC0831)

    逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。

其电路规模属于中等。

其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

    3)并行比较型/串并行比较型(如TLC5510)

    并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。

由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

    串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。

还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。

这类AD速度比逐次比较型高,电路规模比并行型小。

    4)Σ-Δ(Sigma?

/FONT>delta)调制型(如AD7705)

    Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。

原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。

电路的数字部分基本上容易单片化,因此容易做到高分辨率。

主要用于音频和测量。

    5)电容阵列逐次比较型

    电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。

一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。

如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。

最近的逐次比较型AD转换器大多为电容阵列式的。

    6)压频变换型(如AD650)

    压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。

其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。

从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。

其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。

2. AD转换器的主要技术指标

    1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。

分辩率又称精度,通常以数字信号的位数来表示。

    2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。

    3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

    4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。

    5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

    6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。

 

    其他指标还有:

绝对精度(Absolute Accuracy) ,相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distotortion缩写THD)和积分非线性。

3. DA转换器

    DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。

大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。

按数字输入值切换开关,产生比例于输入的电流(或电压)。

此外,也有为了改善精度而把恒流源放入器件内部的。

一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器,如果经电流椀缪棺缓笫涑觯蛭缪故涑鲂?

/FONT>DA转换器。

此外,电压开关型电路为直接输出电压型DA转换器。

    1)电压输出型(如TLC5620)

    电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内置输出放大器以低阻抗输出。

直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟,故常作为高速DA转换器使用。

    2)电流输出型(如THS5661A)

    电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:

一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。

用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。

此外,大部分CMOS DA转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。

当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了达算放入器的延迟,使响应变慢。

此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。

    3)乘算型(如AD7533)

    DA转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。

乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。

    4)一位DA转换器

    一位DA转换器与前述转换方式全然不同,它将数字值转换为脉冲宽度调制或频率调制的输出,然后用数字滤波器作平均化而得到一般的电压输出(又称位流方式),用于音频等场合。

4. DA转换器的主要技术指标:

    1)分辩率(Resolution) 指最小模拟输出量(对应数字量仅最低位为‘1’)与最大量(对应数字量所有有效位为‘1’)之比。

    2)建立时间(Setting Time) 是将一个数字量转换为稳定模拟信号所需的时间,也可以认为是转换时间。

DA中常用建立时间来描述其速度,而不是AD中常用的转换速率。

一般地,电流输出DA建立时间较短,电压输出DA则较长。

    其他指标还有线性度(Linearity),转换精度,温度系数/漂移。

 

A/D变换类型

  在科研、生产中,要经常进行模拟量的测量和控制。

为了对温度、压力、流量、速度、位移等物理量进行测量和控制,都是通过各种传感器把上述物理量转换成模拟物理量的电信号,即模拟电信号;将模拟电信号经过处理并转换成计算机能识别的数字量,送进计算机,这就是A/D变换过程或称为数据采集。

目前大部分传感器输出的仍是电压或电流等模拟信号,所以往往需要将这些模拟信号转换成易于处理和存储的数字信号。

  现在常用的A/D转换器(Analog-DigitalConvert,ADO)有:

积分型、逐次逼近型、并行比较型,∑—△型和流水线型等转换器。

  1.积分型A/D转换器

  积分型AID转换器如图1所示,输入端采用积分器,所以对高频噪声和固定的低频干扰如50Hz或60Hz有很强的抑制能力。

积分型模数转换器的采样速度和带宽都非常低,转换速率在12位时为100~300samples/s,但它们的精度可以做得很高,分辨率可高达22位,主要应用于低速、精密测曩等领域。

  图1积分型A/D转换器

  2.逐次逼近型A/D转换器

  逐次逼近型A/D转换器如图2所示,是应用非常广泛的A/D转换方式。

它由比较器、D/A转换器、比较寄存器SAR、时钟发生器及逻辑控制电路组成。

  图2逐次逼近型A/D转换器

  这种A/D转换器速度较高,可达1Msps,适用于中速率而分辨率要求较高的场合。

与其他A/D相比,功耗相当低,在分辨率低于12位时,价格较低;在高于14位分辨率情况下,价格较高。

  3.并行比较型A/D转换器

  并行比较型A/D转换器如图3所示,是现今速度最快的A/D转换器,采样速率在1Gsps以上,又称为闪烁型A/D转换器,它主要由电阻分压网络、比较器、编码器等组成。

这种结构的A/D转换器由于不用逐次比较,所有位的转换同时完成,所以速度大为提高。

  图3并行比较型A/D转换器

  这种A/D转换器速度是最快的,但是由于本身的结构特点,导致分辨率不高、功耗大、成本高。

这是因为要提高一位分辨率(使输出数字量增加一位),便意味着编码器的输入要增加一倍,这时精密电阻数量就要增加一倍,比较器也近似增加一倍。

还有就是结构重复的并行比较器之间任何失配都会造成静态误差,比较器的亚稳态还会产生闪烁码温度计气泡,所以只适用于速度要求特别高的领域,如视频A/D转换器等。

  4.∑-△(增量)调制型A/D转换器

  ∑—△调制型A/D转换器又称为过采样A/D转换器,如图4所示。

它的分辨率高,主要应用于高精度数据采集系统,特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量等领域。

  图4∑-△调制型A/D转换器

  5.流水线型A/D转换器

  为兼顾高速率和高精度的要求,流水线结构的A/D转换器应运而生。

这种A/D转换器如图5所示,它结合了串行和闪烁型ADO的特点,采用基于流水线结构(pipeline)的多级转换技术,各级模拟信号之间并行处理,能得到较高的转换速度为100Msps;利用数字校正电路对各级误差进行校正,保证有较高的精度;所用器件数目与转换位数成正比,可有效地控制功耗和成本。

  本实例采用的是流水线结构的12位模一数转换器(ADO)。

  图5流水线型A/D转换器

分贝(dB):

按照对数定义的一个幅度单位。

对于电压值,dB以20log(VA/VB)给出;对于功率值,以10log(PA/PB)给出。

dBc是相对于一个载波信号的dB值;dBm是相对于1mW的dB值。

对于dBm而言,规格中的负载电阻必须是已知的(如:

1mW提供给50Ω),以确定等效的电压或电流值。

有效位数(ENOB):

模数转换器(ADC)与输入频率fIN相关的测试指标(位)。

随着fIN的增大,整体噪声(特别是失真成分)将会增大,因而降低了ENOB和SINAD性能。

另请参考:

信号与噪声+失真比(SINAD)。

ENOB与SINAD的关系式为:

分辨率:

模拟信号被量化时,它是以有限的离散电压电平表示的,分辨率是用来表示信号的离散电平个数。

为了更精确地恢复模拟信号,必须提高分辨率。

分辨率通常定义为位数,利用更高的分辨率进行转换可以降低量化噪声。

RMS:

参考有关均方根(RMS)的注释。

均方根(RMS):

表示交流信号的有效值或有效直流值。

对于正弦波,RMS是峰值的0.707倍,或者是峰-峰值的0.354倍。

信号与噪声+失真比(SINAD):

直流到奈奎斯特频段内,正弦波fIN(对于ADC指的是输入正弦波,对于ADC/DAC指的是重建的输出正弦波)的RMS值与转换器噪声的RMS值之比,包括谐波成分。

典型值以分贝表示,另请参考关于均方根(RMS)和总谐波失真的注释。

信噪比(SNR):

直流到奈奎斯特频段内,正弦波fIN(对于ADC指的是输入正弦波,对于ADC/DAC指的是重建的输出正弦波)的RMS值与转换器噪声的RMS值之比,直流噪声和谐波失真除外。

典型值以分贝表示,另请参考关于均方根(RMS)的注释。

理想状况下,最小转换噪声的理论值只包括量化噪声,可直接由数据转换分辨率计算得到:

(N):

SNR=(6.02N+1.76)dB

无杂散动态范围(SFDR):

正弦波fIN(对于ADC指的是输入正弦波,对于ADC/DAC指的是重建的输出正弦波)的RMS值与在频域观察到的杂散信号的RMS值之比,典型值以分贝表示。

SFDR在一些需要最大转换器动态范围的通信系统中非常重要。

总谐波失真(THD):

出现在输入(DAC为输出)频率整数倍频点(谐波)的失真的RMS值与输入(或输出)正弦波的RMS值之比。

测量中仅包括奈奎斯特频限内的谐波,典型值以分贝表示:

式中,V2至Vx是基波V1的谐波。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 自然景观

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1