小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx

上传人:b****9 文档编号:25630469 上传时间:2023-06-10 格式:DOCX 页数:19 大小:138.91KB
下载 相关 举报
小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx_第1页
第1页 / 共19页
小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx_第2页
第2页 / 共19页
小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx_第3页
第3页 / 共19页
小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx_第4页
第4页 / 共19页
小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx

《小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx》由会员分享,可在线阅读,更多相关《小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx(19页珍藏版)》请在冰豆网上搜索。

小学六年级数学下册第二单元百分数二教案反思板书作业设计.docx

小学六年级数学下册第二单元百分数二教案反思板书作业设计

【新课讲授】

1.教学折扣的含义,会把折扣改写成百分数。

(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?

比如说打“七折”,你怎么理解?

(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。

(电脑显示)

①大衣,原价:

1000元,现价:

700元。

②围巾,原价:

100元,现价:

70元。

③铅笔盒,原价:

10元,现价:

④橡皮,原价:

1元,现价:

(3)动脑筋想一想:

如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?

如果原价是1元的橡皮,打七折,现价又是多少?

(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?

带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

(5)讨论,找规律。

A.学生动手操作、计算,并在计算或讨论中发现规律。

B.学生汇报寻找的方法:

利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;或查书等等。

(6)归纳,得定义。

A.通过小组讨论,谁能说说打七折是什么意思?

打八折是什么意思?

打八五折呢?

B.概括地讲,打折是什么意思?

如果用分母是十的分数,该怎样表示?

(“几折”就是十分之几,也就是百分之几十)

C.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。

几折就是十分之几,也就是百分之几十。

如八五折就是85%,九折就是90%。

一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(例如八五折就会写成

),不便于计算和理解。

(7)练习。

①四折是十分之(),改写成百分数是()。

②六折是十分之(),改写成百分数是()。

③七五折是十分之(),改写成百分数是()。

④九二折是十分之(),改写成百分数是()。

2.运用折扣含义解决实际问题。

出示问题

(1):

爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。

买这辆车用了多少钱?

1导学生分析题意:

打八五折怎么理解?

是以谁为单位“1”?

2找出数量关系式。

先让学生找出单位“1”,然后再找出数量关系式:

原价×85%=实际售价

3学生独立根据数量关系式,列式解答。

④全班交流。

根据学生的汇报,板书:

180×85%=153(元)

答:

买这辆车用了153元。

出示问题

(2):

爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

1导学生理解题意:

只花了九折的钱怎么理解?

以谁为单位“1”?

2学生试算,独立列式。

③全班交流。

根据学生的汇报,板书:

第一种算法:

原价160元,减去现价,就是比原价便宜多少钱。

160-160×90%

=160-144

=16(元)

第二种算法:

原价160元,现价比原价便宜了(1-90%)。

160×(1-90%)

=160×10%

=16(元)

重点引导学生理解第二种算法,知道现价比原价便宜了10%。

3.典例讲析。

例在某商店促销活动时,原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后的几辆车售价多少元?

分析:

原价800元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。

可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。

解:

800×90%×80%=720×80%=576(元)

答:

最后的几辆车售价是576元。

【课堂作业】

1.

(1)爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价便宜了多少钱?

A.打八折怎么理解?

是以谁为单位“1”?

B.学生试做,讲评。

(2)判断:

①商品打折扣都是以原商品价格为单位“1”,即标准量。

()

②一件上衣现在打八折出售,就是说比原价降低10%。

()

2.完成教材第8页“做一做”练习题。

3.完成教材第13页练习二第1~3题。

说明:

第1题是一道开放题,有多种可能,应注意给学生提供交流自己想法的机会。

练习后可指出“五折”也可以说成“半价”,丰富学生的生活经验。

第2题,要注意指导学生理解9.6元表示的实际含义,它与八折有什么关系。

使学生明确9.6元就是打折后比原价少的钱数,它相当于原价的1—80%,在此基础上让学生列出方程或算式。

答案:

1.

(1)240-240×80%=48(元)

(2)①√②×

2.第8页“做一做”:

5273.530.8

3.练习二第1题:

(1)1.5×50%=0.75(元)

2.4×50%=1.2(元)

1×50%=0.5(元)

3×50%=1.5(元)

(2)(此题答案不唯一)可以买一种面包,也可以两种或两种以上合买。

单独买各种打折后的面包:

①3÷0.75=4(个)

合买各种打折后的面包:

②3÷0.5=6(个)

33÷1.5=2(个)

④3÷1.2=2(个)……0.6(元),再买1个打折后0.5元的面包。

⑤可以买3个0.5元的面包,买2个0.75元的面包。

可以买1个1.5元的面包,买2个0.75元的面包……第3题:

分析:

按原价的八折买,优惠价占二折,9.6元占原价的20%,求出原价,用除法计算。

解答:

9.6÷20%=48(元)

【课堂小结】

通过这节课的学习你有什么收获?

【课后作业】

完成练习册中本课时的练习。

第1课时折扣

八五折180×85%=153(元)

九折160×(1-90%)=160×10%=16(元)

总结:

解决与折扣有关的实际问题实质上是求一个数的百分之几是多少和已知一个数的百分之几是多少求这个数的问题。

在分析折扣时,不要把打折后的价格当作定价,正确区分定价、进价和售价是解决折扣问题的关键。

1.“打折”这个概念,在日常生活中用到,学生比较熟悉。

2.学生对打折的认识还只是停留于感性认识,如打折,学生都知道是便宜了,比原价少了,但是真正能够解释清楚的并不多,对折扣的知识并未真正理解。

【新课讲授】

1.介绍成数的含义,会把成数改写成分数,百分数。

(成数:

表示一个数是另一个数的十分之几,通称“几成”)

(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?

比如说,增产“二成”,你怎么理解?

(学生讨论并回答)

教师板书:

成数分数百分数

二成十分之二20%

(2)试说说以下成数表示什么?

①出口汽车总量比去年增加三成。

这里的“三成”表示什么?

②北京出游人数比去年增加两成。

这里的两成表示什么?

引导学生讨论并回答。

2.运用成数的含义解决实际问题。

(1)出示教材第9页例2:

某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

(2)分析题目,理解题意:

①今年比去年节电二成五怎么理解?

是以哪个量为单位“1”?

②找出数量关系式。

先让学生找出单位“1”,然后再找出数量关系式:

今年的用电量=去年的用电量×(1-25%)

③学生独立根据关系式,列式解答。

④全班交流。

方法一:

350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时)

方法二:

350×(1-25%)=350×75%=350×75/100=262.5(万千瓦时)

【课堂作业】

完成教材第9页“做一做”。

答案:

15000÷(1+20%)=15000÷1.2=12500(人)

【课堂小结】

这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?

【课后作业】

完成练习册中本课时的练习。

第2课时

成数

 

“成数”已经广泛应用于表示各行各业的发展变化情况。

教学本课时要多联系实际讲解,列关系式时要多强调哪个量是单位“1”,加强学生的逻辑训练。

 

【新课讲授】

1.阅读教材第10页有关纳税的内容。

说说:

什么是纳税?

2.税率的认识。

(1)说明:

纳税的种类很多,应纳税额的计算方法也不一样。

应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。

(2)试说说以下税率表示什么。

A.商店按营业额的5%缴纳个人所得税。

这里的5%表示什么?

B.某人彩票中奖后,按奖金的20%缴纳个人所得税。

这里的20%表示什么?

3.税款计算。

(1)出示例3:

一家饭店十月份的营业额约是30万元。

如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?

(2)分析题目,理解题意。

引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。

(3)学生列出算式。

求一个数的百分之几是多少,用乘法计算。

列式:

30×5%

(4)学生尝试计算。

(5)汇报交流。

30×5%这个算式有两种计算方法。

方法1:

把百分数化成分数来计算。

30×5%=30×

=1.5(万元)

方法2:

把百分数化成小数来计算。

30×5%=30×0.05=1.5(万元)

【课堂作业】

1.巩固练习:

教材第10页“做一做”。

2.完成教材第14页练习二第6题。

答案:

1.(5000-3500)×3%=45(元)

2.300×3%=9(元)

【课堂小结】

这节课我们一起学习了有关纳税的知识,你们对纳税的知识有哪些了解?

【课后作业】

1.完成练习册中本课时的练习。

2.教材第14页第7题。

第3课时税率

应纳税额=收入额×税率收入额=应纳税额÷税率税率=应纳税额÷收入额×100%30×5%=1.5(万元)

答:

10月份应缴纳营业税约1.5万元。

1.教师在给学生讲解应纳所得税时,如果没有说明,学生可能会对个人所得税的应纳税额的理解模糊。

2.学生对于纳税的知识很感兴趣,积极性很高。

那么,怎样计算利息呢?

这就是我们今天要学的内容。

【新课讲授】

1.介绍存款的种类、形式。

存款分为活期、整存整取和零存整取等方式。

2.阅读教材第11页的内容,自学讨论例4,理解本金、利息、税后利息和利率的含义。

(例如:

王奶奶2012年月8月1日把5000元钱存入银行,整存整取两年,到2013年8月1日,王奶奶不仅可以取回存入的5000元,还可以得到银行多付给的150元,共5150元。

)(注:

这里不考虑利息税)

本金:

存入银行的钱叫做本金。

王奶奶存入的5000元就是本金。

利息:

取款时银行多支付的钱叫做利息。

利率:

利息和本金的比值叫做利率。

(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。

3.学会填写存款凭条。

把存款凭条画出来,请学生尝试填写。

然后评讲。

(要填写的项目:

户名、存期、存入金额、存种、密码、地址等,最后填上日期。

4.利息的计算。

(1)出示利息的计算公式:

利息=本金×利率×时间

(2)计算方法:

若按照2012年7月的银行利率,如果王奶奶的5000元钱整存整取,两年到期的利息是多少?

学生计算后交流,教师板书:

5000×3.75%×2=375(元)

加上王奶奶存入的本金5000元,到期时她能得到本金和利息,一共5375元。

【课堂作业】

本题是有关“打折”和“纳税”的问题,是百分数的具体应用,在练习时应让学生说说自己每一步计算的意义,并进行集体订正。

【课堂小结】

通过本节课的学习,你学会了什么?

什么叫本金?

什么叫利息?

什么叫利率?

如何计算利息?

【课后作业】

1.完成练习册中本课时的练习。

2.教材第14页第9题。

第4课时利率

利息=本金×利率×时间

任何一种存款,在计算利息时,都要乘以存入的时间,如果存款的利率是年利率,计算时所乘时间单位应是年,如果存款的利率是月利率,计算时所乘时间单位应是月,不要一律按年计算。

折扣、成数、税率、利率是百分数在生活中的具体应用,与人们的生活密切相关。

其中,折扣是学生们日常生活最熟悉的,教学中,我没有剥夺孩子们想说的权利,让他们自由地来说说他们对折扣的理解,并引入商品打折销售的情境,解决与之相关的实际问题。

但教学中我没有说清楚几折就是十分之几,因此个别孩子对于七五折这样的概念还不是很清楚。

而税率和利率,则主要是通过公式的展示教给孩子解题的方法。

(1)妈妈想买一件原价500元的裙子,五折之后这条裙子多少钱?

(2)爸爸这个月工资由原来的6000元涨了一成五,爸爸现在工资是多少?

(3)爸爸的月工资是6000,扣除3500个人免税征额后的部分需要按3%的税率缴纳个人所得税,他应缴个人所得税多少元?

(4)小云将压岁钱1000元存入银行,存期为3年,年利率为4.25%。

到期支取时,小云一共能取回多少钱?

师:

这几道题分别属于什么类型的应用题?

学生交流,汇报。

【新课讲授】

教学例5。

1.学生读题,明确已知条件及问题,尝试说说自己的解题思路。

2.利用提问,引导学生思考回答,归纳出解题思路。

教师:

“满100元减50元”是什么意思?

引导回答:

就是在总价中取整百元部分,每个100元减去50元。

不满100元的零头部分不优惠。

解题思路:

(1)在A商场买,直接用总价乘以50%就能算出实际花费。

(2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。

3.学生独立列出算式后,让他们计算并给出结果。

板书:

A:

230×50%=115(元)

B:

230-2×50=130(元)

A

4.回顾与反思。

提问:

通过计算,我们知道了A商场更省钱,在什么时候两个商场价格差不多呢?

反思:

看起来满100减50元不如打五折实惠。

如果总价能凑成整百多一点就差不多了。

【课堂作业】

完成教材第12页“做一做”。

学生独立完成,教师讲解。

答案:

A商场:

120-40=80(元)

B:

120×60%=72(元)

B商场更省钱。

【课堂小结】

通过这节课,你有什么收获,你将如何运用到生活中呢?

【课后作业】

完成练习册中本课时的练习。

第5课时解决问题

A商场:

230×50%=115(元)

B商场:

230-50×2=130(元)

115<130,A商场更省钱。

本堂课我运用了“复习——提问——题目——引导——分析——等量关系——解决问题——反思”这样的环节来教学例题,本是很清晰的一个数学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1