课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx

上传人:b****9 文档编号:25608450 上传时间:2023-06-10 格式:DOCX 页数:42 大小:518.62KB
下载 相关 举报
课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx_第1页
第1页 / 共42页
课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx_第2页
第2页 / 共42页
课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx_第3页
第3页 / 共42页
课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx_第4页
第4页 / 共42页
课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx_第5页
第5页 / 共42页
点击查看更多>>
下载资源
资源描述

课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx

《课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx》由会员分享,可在线阅读,更多相关《课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx(42页珍藏版)》请在冰豆网上搜索。

课程设计论文基于mcs51系列单片机的数字温度监测装置设计.docx

课程设计论文基于mcs51系列单片机的数字温度监测装置设计

课程设计说明书

 

基于MCS-51系列单片机的

数字温度监测装置设计

 

学生班级:

学生姓名:

起止日期:

指导教师:

 

一、引言4

1.本次课程设计的重要意义4

2.温度传感器的发展4

二、设计内容及性能指标5三、系统方案总体概述5

四、系统主要器件选择6

(一)单片机的选择6

1.主要性能参数6

2.功能特性概述7

3.引脚功能说明8

4.端口引脚第二功能9

(二)温度传感器的选择10

1.总述10

2.温度传感器的选择11

2.1DS18B20简介11

2.2DS18B20内部结构11

2.3DS18B20测温原理15

五、系统整体设计17

(一)系统硬件电路设计17

1.硬件电路设计总体概述17

2.CPU机器基本外围电路设计18

2.1单片机电路18

2.2晶振控制电路18

2.3继电器电路19

2.4锁存器74LS373引脚功能及工作原理19

2.4.174LS373引脚功能20

2.4.274LS373工作原理20

2.4.3Intel2764引脚功能23

3.前向通道设计23

3.1温度检测电路23

3.2电源输入部分电路24

4.后向通道设计及人机通道设计25

4.1后向通道设计25

4.1.1LED显示电路25

4.1.1.1LED显示器的结构25

4.1.1.2LED显示器的工作原理26

4.1.1.3LED显示设计方案27

4.2键盘27

4.3温度报警电路28

4.4复位电路28

5.抗干扰措施29

5.1干扰产生的后果29

5.2抗干扰设计的基本原则30

5.3硬件抗干扰设计31

5.4软件的抗干扰设计32

(二)系统软件设计33

1.概述33

2.主程序模块33

3.部分程序清单34

3.1温度传感器的驱动程序34

3.2LED共阳极显示子程序36

六、附录36

七、致谢37

参考文献

 

一、引言

1.本次课程设计的重要意义

随着我国经济的快速增长,电力需求量日益增加,如何保障电力的持续供应是电力运行中的一道难题。

根据对各类电力事故的分析,由于电力设备温度过高而引发的火灾占相当大的比例。

大多数电气设备,如开关柜、电缆沟、带电间隔等采用封闭式结构,空间狭小,热积累量大,散热效果差,并长期处于高电压、大电流、满负荷的条件下运行,极易发生火灾。

这种火灾一旦发生,将导致大量电网设备被烧毁,变电站停运甚至电网崩溃等恶劣后果,国民生产无法进行,导致巨大损失。

引起火灾的直接原因就是线路接头温度过高,长期运行而烧穿绝缘,点燃周围电缆等可燃物,引发火灾。

在设备长期运行过程中,各接头触点、母线排接处等部位因绝缘老化或接触电阻过大而急剧发热,而这些发热部位工作人员不易接近,手工测温困难,如果能够有效的自动监测各接头的温度,一旦出现温度异常情况,立刻上传报警,通知维护人员及时采取措施排除隐患,把故障消除在萌芽状态,从而达到安全供电的目的。

因此,电气设备温度在线监测问题已成为电力系统安全运行所急需解决的实际问题,是提高电力系统运行可靠性的迫切需求,对保障电力系统安全稳定运行有极其重要的意义。

2.温度传感器的发展

测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:

①传统的分立式温度传感器

②模拟集成温度传感器

③智能集成温度传感器。

目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。

社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,89S51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。

与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。

该设计控制器使用ATMEL公司的AT89S51单片机,测温传感器使用DALLAS公司DS18B20,用液晶来实现温度显示。

二、设计内容及性能指标

本设计主要是单片机控制下的温度检测系统,详细介绍了其硬件和软件设计,并对其各功能模块做了详细介绍,其主要功能和指标如下:

●利用温度传感器(DS18B20)测量某一点环境温度

●测量范围为-55℃~+99℃,精度为±0.5℃

●用液晶进行实际温度值显示

●能够根据需要方便设定上下限报警温度

三、系统总体设计原理

该系统主要由温度测量和数据采集两部分电路组成。

该系统利用AT89S51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。

利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度数据。

系统框图如下图所示

DS18B20温度测温系统框图

本设计以AT89S51芯片为核心,AT89S51芯片的外围扩展了数据锁存器74L373和74LS138,同时具有LED(发光二极管)显示器、复位功能等。

四、系统主要器件选择

(一)单片机的选择

对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有内部RAM,系统又需要大量内存存储数据,因而不适用。

AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4kbytes的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。

它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片芯片中,ATMEL公司的功能强大,价格低廉,可灵活应用于各种控制领域。

1.主要性能参数:

·与MCS-51产品指令系统完全兼容

·4k字节在系统编程(ISP)Flash闪速存储器

·1000次擦写周期

·4.0-5.5V的工作电压范围

·全静态工作模式:

0Hz-33MHz

·三级程序加密锁

·128×8字节内部RAM

·32个可编程I/O口线

·2个16位定时/计数器

·6个中断源

·全双工串行UART通道

·低功耗空闲和掉电模式

·中断可从空闲模唤醒系统

·看门狗(WDT)及双数据指针

·掉电标识和快速编程特性

·灵活的在系统编程(ISP字节或页写模式)

2.功能特性概述:

AT89S51提供以下标准功能:

4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。

同时,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。

空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。

掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。

 

AT89S51方框图

3.引脚功能说明

·Vcc:

电源电压

·GND:

·P0口:

P0口是一组8位漏极开路型双向I/0口,也即地址/数据总线复用口。

作为输出口用时,每位能驱动8个TTL逻辑门电路,对端口写“l”可作为高阻抗输入端用。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

在F1ash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

·P1口:

Pl是一个带内部上拉电阻的8位双向I/O口,Pl的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“l”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

Flash编程和程序校验期间,Pl接收低8位地址。

端口引脚第二功能

P1.5MOSI(用于ISP犏程)

P1.6MISO(用于ISP犏程)

P1.7SCK(用于ISP犏程)

·P2口:

P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。

在访问8位地址的外部数据存储器(如执行MOVX@Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中P2寄存器的内容),在整个访问期间不改变。

Flash编程或校验时,P2亦接收高位地址和其它控制信号。

·P3口:

P3口是一组带有内部上拉电阻的8位双向I/0口。

P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对P3口写入“l”时,它们被内部上拉电阻拉高并可作为输入端口。

作输入端时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。

P3口除了作为一般的I/0口线外,更重要的用途是它的第二功能,如下表所示:

P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

4.端口引脚第二功能

P3.0RXD(串行输入口)

P3.1TXD(串行输出口)

P3.2INT0(外中断0)

P3.3INT1(外中断1)

P3.4T0(定时/计数器0外部输入)

P3.5T1(定时/计数器1外部输入)

P3.6WR(外部数据存储器写选通)

P3.7RD(外部数据存储器读选通)

·RST:

复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

WDT溢出将使该引脚输出高电平,设置SFRAUXR的DISRT0位(地址8EH)可打开或关闭该功能。

DISRT0位缺省为RESET输出高电平打开状态。

·ALE/PROG:

当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字

节。

即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。

要注意的是:

每当访问外部数据存储器时将跳过一个ALE脉冲。

对F1ash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。

该位置位后,只有一条M0VX和M0VC指令ALE才会被激活。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。

·PSEN:

程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或

数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。

当访问外部数据存储器,没有两次有效的PSEN信号。

·EA/VPP:

外部访问允许。

欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接

地)。

需注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态。

如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。

F1ash存储器编程时,该引脚加上+12V的编程电压Vpp。

·XTALl:

振荡器反相放大器及内部时钟发生器的输入端。

·XTAL2:

振荡器反相放大器的输出端。

(二)温度传感器的选择

1.总述

温度的测量是从金属(物质)的热胀冷缩开始。

水银温度计至今仍是各种温度测量的计量标准。

可是它的缺点是只能近距离观测,而且水银有毒,玻璃管易碎。

代替水银的有酒精温度计和金属簧片温度计,它们虽然没有毒性,但测量精度很低,只能作为一个概略指示。

不过在居民住宅中使用已可满足要求。

在工业生产和实验研究中为了配合远传仪表指示,出现了许多不同的温度检测方法,常用的有电阻式、热电偶式、PN结型、辐射型、光纤式及石英谐振型等。

它们都是基于温度变化引起其物理参数(如电阻值,热电势等)的变化的原理。

随着大规模集成电路工艺的提高,出现了多种集成的数字化温度传感器。

2.温度传感器的选择

由于本次系统的温度偏高,在设计系统的时候我们首先考虑的是热电偶,但是其转化电路较为麻烦,增加了电路的制作成本。

在比较了大量的测温方案后,我们决定采用集成温度测量芯片DS18B20。

芯片DS18B20转换速度快,转换精度高,终于微处理器的接口简单,给硬件设计工作带来了极大的方便,能有效的降低成本,缩短开发周期。

本系统使用的温度芯片顺应了这一趋势。

简化电路的同时增加了系统的可靠性。

2.1DS18B20简介

DALLAS最新单线数字温度传感器DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。

DALLAS半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。

温度测量范围为-55~+125摄氏度,可编程为9位~12位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。

2.2DS18B20内部结构

DS1820的内部框图,它主要包括寄生电源、温度传感器、64位激光ROM单线接口、存放中间数据的高速暂存器(内含便笺式RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。

DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2.1所示

图2.1DS18B20内部结构框图

64b闪速ROM的结构如下:

开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。

温度报警触发器TH和TL,可通过软件写入户报警上下限。

主机操作ROM的命令有五种,如表所列

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。

高速暂存RAM的结构为8字节的存储器,结构如图2.2所示。

图2.2高速暂存RAM结构图

前2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。

DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

温度低位

温度高位

TH

TL

配置

保留

保留

保留

8位CRC

LSBMSB

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。

单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0.0625℃/LSB形式表示。

温度值格式如下:

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

图中,S表示位。

对应的温度计算:

当符号位S=0时,表示测得的温度植为正值,直接将二进制位转换为十进制;当S=1时,表示测得的温度植为负值,先将补码变换为原码,再计算十进制值。

例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

DS18B20温度传感器主要用于对温度进行测量,数据可用16位符号扩展的二进制补码读数形式提供,并以0.0625℃/LSB形式表示。

表2是部分温度值对应的二进制温度表示数据。

表2部分温度值

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较,若T>TH或T

因此,可用多只DS18B20同时测量温度并进行告警搜索。

在64位ROM的最高有效字节中存储有循环冗余校验码(CRC)。

主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。

2.3DS18B20测温原理

每一片DSl8B20在其ROM中都存有其唯一的48位序列号,在出厂前已写入片内ROM中。

主机在进入操作程序前必须用读ROM(33H)命令将该DSl8B20的序列号读出。

程序可以先跳过ROM,启动所有DSl8B20进行温度变换,之后通过匹配ROM,再逐一地读回每个DSl8B20的温度数据。

DS18B20的测温原理如图2.4所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值.。

 

表3-1ROM操作命令

指令

约定代码

功能

读ROM

33H

读DS18B20ROM中的编码

符合ROM

55H

发出此命令之后,接着发出64位ROM编码,访问单线总线上与该编码相对应的DS18B20使之作出响应,为下一步对该DS18B20的读写作准备

搜索ROM

0F0H

用于确定挂接在同一总线上DS18B20的个数和识别64位ROM地址,为操作各器件作好准备

跳过ROM

0CCH

忽略64位ROM地址,直接向DS18B20发温度变换命令,适用于单片工作。

告警搜索

命令

0ECH

执行后,只有温度超过设定值上限或者下限的片子才做出响应

温度变换

44H

启动DS18B20进行温度转换,转换时间最长为500MS,结果存入内部9字节RAM中

读暂存器

0BEH

读内部RAM中9字节的内容

写暂存器

4EH

发出向内部RAM的第3,4字节写上、下限温度数据命令,紧跟读命令之后,是传送两字节的数据

复制暂存器

48H

将E2PRAM中第3,4字节内容复制到E2PRAM中

重调E2PRAM

0BBH

将E2PRAM中内容恢复到RAM中的第3,4字节

读供电

方式

0B4H

读DS18B20的供电模式,寄生供电时DS18B20发送“0”,外接电源供电DS18B20发送“1”

另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。

系统对DS18B20的各种操作必须按协议进行。

操作协议为:

初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。

测温原理内部装置

 

五、系统整体设计

(一)系统硬件电路设计

1.硬件电路设计总体概述

温度计电路设计原理图如图5.1所示,控制器使用单片机AT89C2051,温度计传感器使用DS18B20,用液晶实现温度显示。

本温度计大体分三个工作过程。

首先,由DS18820温度传感器芯片测量当前的温度,并将结果送入单片机。

然后,通过89C205I单片机芯片对送来的测量温度读数进行计算和转换,井将此结果送入液晶显示模块。

最后,SMC1602A芯片将送来的值显示于显示屏上。

 由图1可看到,本电路主要由DSl8820温度传感器芯片、SMCl602A液晶显示模块芯片和89C2051单片机芯片组成。

其中,DSI8B20温度传感器芯片采用“一线制”与单片机相连,它独立地完成温度测量以及将温度测量结果送到单片机的工作。

图5.1电路设计原理图

2.CPU机器基本外围电路设计

2.1单片机电路

对于AT89S51的简介在本文的第四部分

单片机电路引脚图

2.2晶振控制电路

AT89C51中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。

这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器。

外接石英晶体或陶瓷谐振器及电容C1、C2接在放大器的反馈回路中构成并联写真电路。

对外接电容C!

、C2虽然没有十分严格的要求,当电容容量的大小会轻微影响振荡器频率的高低、振荡器工作的稳定性、起振的难易程度及温度的稳定性。

晶振控制电路图

2.3继电器电路

图中P1.1引脚控制加热器继电器。

给.P1.1低电平,三极管导通,电磁铁触头放下来开始工作.

继电器电路图

 

2.4锁存器74LS373引脚功能及工作原理

2.4.174LS373引脚功能

D0~D7为8个输入端

Q1~Q7为8个输出端

 

LE是数据锁存控制端;当LE=1时,锁存器输出端同输入端;当LE由1变为0时,数据输入锁存器中。

OE为输出允许端;当OE=0时,三态门打开:

当OE=1时,三态门关闭,输出呈高阻状态。

2.4.274LS373工作原理

输入端D0~D7接于单片机P0口,输出端提供的是低8位地址,LE端接至单片机的地址锁存允许信号ALE。

输出允许端

接地,以保持输出长通。

LE端与8031单片机的ALE端口连接,当LE=1时(ALE高电平持续时间),74LS473的输出Q0~Q7随其输入D0~D7的状态变化,即P0口送出低8位地址信号一旦输出即传输到2764芯片,5264芯片的地址输入端口A0~A7,实现输入输出隔离。

74LS1

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 环境科学食品科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1