数学建模论文汇总.docx
《数学建模论文汇总.docx》由会员分享,可在线阅读,更多相关《数学建模论文汇总.docx(26页珍藏版)》请在冰豆网上搜索。
数学建模论文汇总
Contents
1.Introduction
2.RestatementoftheProblem
3.Convention
3.1Terminology
3.2Variables
3.3Assumptions
4.TheModel
4.1theco-authornetworkoftheErdos1authors
4.1.1Completeco-authornetwork
4.1.2Streamlinedco-authornetwork
4.2NMIMModelToFindtheMostInfluentialAuthor
4.2.1WhyisNMIM(Network’smulti-attributeindicatormethod)
4.2.2DefinitionofMeasureIndicators
4.2.3ModelEstablishment
4.2.4SummaryoftheNMIM
4.3TheJournalCitationNetworksModel
4.3.1Modelestablishment
4.3.2Modelsolutionandanalysis
4.3.3Theinfluencemeasureofanindividualnetworkresearcher
4.3.4Theinfluencemeasureofajournal
5.ApplicationoftheModel:
theInfluentialActorsinFeng’s
6.FurtherDiscussion
6.1DiscussionabouttheScience,UnderstandingandUtility
6.2FurtherDiscussion:
HelpSocietyinPreventingspreadofrumor
7.Conclusion
8.StrengthsandWeaknesses
9.Reference
1.Introduction
Asanordinaryperson,wewouldneverthinkofthatthereisanintersectionpointwiththeworld-famousmathematician.Ifwewanttoknowtheintersectionpoint,soeasy,justvisitthewebsitesaboutErdösNumber.Asweallknow,PaulErdösisaverytalentedmathgenius,hehaspublished1457papersandhascollaboratedwith511peopleinhislife.Becausetheco-authorsaretoomany,soErdösnumberisborn.Erdös’sErdösNumberiszero.TheErdösNumberofpeoplewhohaswritedpapersdirectlywithErdösisone,ifsomeonehaswritedwithanErdösNumberoneperson,hisErdösNumberwillbetwo,andsoon.Soifwegototest,itispossibletofindtheErdösNumberthatbelongstoourselves.WhatismarvelousisErdösisnotonlythecenterofErdösNumbernetwork,butalsofocusonthestudyofnetworkscience.
Networkscienceisaninterdisciplinaryacademicfieldwhichstudiesthequalitativeandquantitativelawsofcomplexnetworkssuchassocialnetworks,computer,telecommunicationnetworks,biologicalnetworksandsoon.TheTheUnitedStatesNationalResearchCouncildefinesnetworkscienceas"thestudyofnetworkrepresentationsofphysical,biological,andsocialphenomenaleadingtopredictivemodelsofthesephenomena.
2.RestatementoftheProblem
2.1Problemsweareconfronting
Inaword,ourtaskistoanalyzeinfluenceandimpactinresearchnetworksandotherareasofsociety.Andspecificproblemsareasbelow:
●First,weareallowedtobuildtheco-authornetworkoftheErdos1authors.Thenanalyzethepropertiesofthenetwork.
●CreateamethodtomeasuretheinfluencesoastodeterminewhointhisErdos1networkhassignificantinfluencewithinthenetwork.
●Theproblemtalksaboutanothertypeofinfluencemeasuretocomparethesignificanceofaresearchpaper.Usethepapersintheattachedlisttobuildamodeltodeterminewhichpaperisinthecenterofthecitationnetwork.Besides,discussthesimilarmethodtomeasuretheinfluenceofnetworkresearcher,university,departmentorjournalinthenetwork.
●Applythemodelintodifferenttypesofnetworkandanalyzetheimportanceofnodesinthenet.
●Finally,discusstheinfluencemethodologytosolvetheactualproblemsinthelife.
2.2Solutionstosolvetheseproblems
●AccordingtotheappendixErdos1.htm,wegetamassofdataabout511researcherswhocoauthoredapaperwithErdösandtheirlinksandweuseMicrosoftExcelandJavaCompilertodisposal data.Forthefirstquestion,wecandrawacomplexnetworktobuildtheco-authornetworkoftheErdos1authors.Beforewedothis,weshouldgetridofpeopleoutsidetheErdos1network.Then,regardeverypersonasanode.Weuse
toanalyzeandvisualizelargenetworks.Andweshouldtakesomemeasures,justlikereducingthenumberofedges,deletingsomenodesthathaveminoreffectonthewholenetwork.Finally,wecananalyzethepropertiesofthisnetworkwiththehelpofnetworkfigures.
●Afterreferencingsomepapersassociatedwithco-authornetwork,wehavelearnedseveralcentralityindicatorsdecidingtheimportanceofnodes.Weknowthatsingleindexmaycausetheassessingbecomeonesidedinevitably.SoweadopttheNMIMmodelalsoas”keynodesincomplexnetworksidentifiedbymulti-attributeindicatormethod”tofindthemostinfluentialnodesinthenetwork.Therearefourkindsofindictorsareintroducedtoobtainacomprehensiveresult.Use
tocalculatethevalueofthesecentralityindicators.ThenweadoptAnalyticHierarchyProcesstogettheweightofeachindicator.AccordingtotheintegratedanalysiswecandrawtheconclusionthatthemostinfluentialauthorinErdosnetworkisALON,NOGAM.
●Thethirdproblemissimilartothesecondone.Thedifferenceisthattheconnectionsbetweenpapershavedirections.Wecanalsocalculatethevalueofcentralityindicatorsusing
.Someofthemaredividedintooutdegreeindicatorandindegreeindicator.Besides,weshouldconsidertheimportanceofotherpapersconnectedwiththepaperwestudy.Finally,listTop5papersineachindicatorinatable.Analyzethedatainthetabletogetresults.Thelefttwosmallproblemsaretheapplicationandimprovementofthecitationnetworkmodel.Calculateresultsandmodifysomepartsofmodelcansolvetheproblemeasily.
●Thefourthproblemrequiresustoimplementouralgorithmonacompletelydifferentnetwork.Weshouldchoosetherepresentativenetwork,anditmustbeeasytoachive.ourchoosepositionedintheactorswhohaveperformedinFeng’smovie(directedbyXiaogangFeng).ThenusetheNMIMmodeltoselecttheinfluentialactors.
●First,weshoulddiscussthetheScience,UnderstandingandUtilityofourmodelbasingontheprocessofmodelestablishment.Thenanalyzethepossibilitythattohelpsocietyinpreventingspreadofrumorbyourmodels..
3.Convention
3.1Variables
3.2Assumptions
●Wethinktheinfluenceandimpactmentionedintheproblemareequivalenttosignificanceandthedestructivenessofthenetworkafterdeletingthespecificnode.Inourpaper,theinfluenceandimpactofsomeoneorsomethinginnetwork
●Weassumethatintheco-authornetworktheinfluenceisonlyrelatedtothefour
4.TheModel
4.1theco-authornetworkoftheErdos1authors
4.1.1Completeco-authornetwork
Wepickoutthe511authorinsidetheErdos1networkbyutilizingMicrosoftExcelandJavaprogram.Sortthem alphabetically.For convenience sake,weuse1to511tostandforthe511authorrespectively(astheirID).Getan adjacencymatrixwith511rowsand511columnstoshowtherelationshipbetweenthecoauthors.Itisobviousthattherelationshipbetweenthecoauthorsismutual(ifAcollaborateswithB,Bcollaborates withA).Sotheadjacencymatrixissymmetric.Wecanjustdrawanundirected graph.ByadoptingPajek,acomplexnetworkispresentedinFigure1.
Figure1.Completeco-authornetwork
InFigure1,wecandistinguishthediffirentdegreesofnodesaccordingtothecolorsofnodes.ThecorrespondencesbetweenthedegreesandthecolorsbaseontheDefaultVertexColorinwherewesetupthePartitionColorinPajek.Tabel1showspartofthecorrespondences.
Table1Thecorrespondencesbetweenthedegreesandthecolors
partition
0
1
2
3
4
5
6
7
Color
Cyan
Yellow
LimeGreen
Red
Blue
Pink
White
Orange
partition
8
9
10
11
12
13
14
15
Color
Purple
CadetBlue
TealBlue
OliveGreen
Gray
Black
Maroom
LightGreen
4.1.2Streamlinedco-authornetwork
However,thenumberofedgesissolargethatthelinescovereachother.Wehardlylookintothecharacteristicandlawsamongnodes,edges,andcolors.Sowelimitthesizeofnetwork.Foranode,wesuspectthatcloserelationstoothernodesmeansmajorinfluence.Wehavedegreesofnodesembodythoserelationsforthetimebeing.So,weselectthenodeswhosedegreeis greater than210.Thereare21nodesthatmeetrequirements.Wedrawthenetworkdrawingconsistingofthesenodesandedgesassociatedwiththenodes.Now,wecanobserveclearinFigure2.
Figure2Streamlinedco-authornetwork
InFigure2,weisinvirtueofnotonlycolor,butalsodiameterdistinguishthediffirentdegreesofnodes.Wejusthaveunderstoodhowcolorrealizes thispurpose.ThecorrespondencesbetweenthedegreesandthecolorsinFigure2aresamewiththeminFigure1.Usingdiametertoattainlikecoloriseasytoo.Thatis:
largerthenodesare,largerthediameterofnodesare.
WereachthefollowingpropertiesofthisnetworkforthepresentfromFigure2:
●Thenumber10(Liu,AndyC.F.)hasmostdegree,andhehasthemostdirectconnectionwithothers.Fromthepointofviewofthis,thenumber10willbethemostinfluential.
●Tofacilitatetheexplanation,wecallthesenodesthathavemajordirectlyconnectededgesBigNote.AndwefoundthatmostofdirectlyconnectededgesofBigNotearedirectlyconnectededgesofotherBigNote.Thatistosay,thedirectrelationbetweenBigNoteismuchmorethanothercombinations.
Theseconclusionbyperceivingsubjectivelyandanalyzingqualitativelywillgetmodificationandperfectioninthenextmodeling.
4.2NMIMModelToFindtheMostInfluentialAuthor
4.2.1WhyisNMIM(Network’smulti-attributeindicatormethod)
The“Network’smulti-attributeindicatormethod”(NMIM),knownalsoas”keynodesincomplexnetworksidentifiedbymulti-attributeindicatormethod”.TheErdos1network(donotincludeErdős)isalsoinvolvesasetofitems(authors),whichwewillcallnodesorsometimesvertices,withconnectionsbetweenthem,callededges.
Ineffect,theresearcherwhohassignificantinfluencewithinthenetworkisthekeynode.
4.2.2DefinitionofMeasureIndicators
ForagivengraphG=(V,E)isanon-directionalnetworkwithoutself-rings,
issetofallthenodesand
isthesetofedgesbetweenthe