青岛版五四制三年级下册数学知识点梳理.docx
《青岛版五四制三年级下册数学知识点梳理.docx》由会员分享,可在线阅读,更多相关《青岛版五四制三年级下册数学知识点梳理.docx(15页珍藏版)》请在冰豆网上搜索。
青岛版五四制三年级下册数学知识点梳理
三年级下册数学知识点梳理
姓名
★写卷子应注意:
1、用手指着认真读题至少两遍;
2、遇到不会的题不要停留太长时间,可在题目的前面做记号。
(如:
“?
”)
3、画图、连线时必须用尺子,画图要用铅笔,要清晰;
4、口算题做一道马上在心里演算一道。
5、检查时,要注意是否有漏写、少写的情况;
第一单元对称
轴对称图形:
对折后两边完全重合。
折痕所在的直线叫做它的对称轴。
切记:
平行四边形不是轴对称图形。
第二单元万以上数的认识
1、读:
先分级,然后从数位的高位开始,一级一级地读。
如:
46┆3800┆6254读作:
四十六亿三千八百万六千二百五十四
2、写:
先从读法中找到“亿”、“万”字,将其视作分级线,再从高位往低位写。
若某一位上没有数字以0补充。
如:
六千八百亿三千零二十万五千六百零八写做:
6800┆3020┆5608
※注:
除了最高级,每一级都有4位数,在写数的时候,若某一位没有数字,必须填“0”补充。
3、读零法则:
每一级末尾的零都不读,其他位上有一位或多位0时,都只读一个零。
例:
用4个8和4个0写出满足以下条件的数字:
※一个零都不读:
8888┆0000,8880┆8000等
②只读一个零:
8808┆8000,8088┆8000等
③读两个零:
88080800,88080080等
※注:
在写含有几个零或读几个零这种题型时,写出之后一定要读一遍,看与要求是否符合。
4、求近似数(省略尾数,或有约字),并以“亿”或“万”作单位:
改变数的大小,要用“≈”,56789要入,01234要舍去。
首先,先分级,若省略“亿”后面的尾数,则先将亿后面的一位(千万位)进行“四舍五入”,再将亿后面的数字全部去掉,并添上一个“亿”字;
若省略“万”后面的尾数,则先将万后面的一位(千位)进行“四舍五入”,再将万后面的数字全部去掉,并添上一个“万”字。
例:
求下列各数的近似数(省略尾数):
573┆8000≈574万495┆4460┆0000≈495亿
5、改写,并以“亿”或“万”作单位
不改变数的大小,要用“=”
首先,先分级,若改写成以“亿”做单位,则先将亿位与千万位之间画上分级线,再将分级线后面的0全部去掉,并添上一个“亿”字;
若改写成以“万”做单位,则先将万位与千位之间画上分级线,,再将分级线后面的0全部去掉,并添上一个“万”字。
6、比较大小
先分级,位数越多,数越大;如果位数相同,再从高位看起,相同数位上大的那个数大
相关链接:
数字编码
数不仅可以用来表示数量和顺序,还可以用来编码。
例如:
身份证号码、邮政编码、车牌号码、条形码、参赛号码、电报译码等
身份证号码的组成一定要记住。
前六位表示出生地址代码(省市区)、7到14位表示出生年月日、15到17位是顺序码,最后一位是校验码。
倒数第二位表示性别,单数为男性,双数为女性。
参赛号码为了号码的整齐划一,不满10的数字前面用0占位,此处要注意。
你知道吗?
自然数都是整数,最小的自然数是0,没有最大的自然数。
自然数的个数是无限的。
第三单元年月日
(一)年月日
1、一年有12个月;一年有4个季度。
1、2、3月——第一季度90天(平年)91天(闰年)
4、5、6月——第二季度91天
7、8、9月——第三季度92天
10、11、12月——第四季度92天
2、记大小月的方法:
一、三、五、七、八、十、腊(十二),31天永不差;
四、六、九、冬(十一),30天,平年二月28,闰年二月29。
3、①平年:
2月(28)天,全年(365)天;上半年有(181)天。
②闰年:
2月(29)天,全年(366)天,上半年有(182)天。
③每年下半年都是(184)天。
4、判断平年、闰年的方法:
(先判断是不是整百年份)
公历年份是4的倍数的,一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。
如:
1900、2100等不是闰年,而1600、2000、2400等是闰年。
①一般的公历年份÷4,没有余数,就是闰年;
②公历年份是整百的÷400,没有余数,就是闰年。
5、时间单位的换算关系:
①1小时=60分②1分=60秒③1日=24小时④1周=7天
1日=24小时,1年=12个月,1世纪=100年
(二)计时法:
1、1日=24时→24时也叫0时。
在一日里,钟表上时针正好走两圈,共24小时。
所以,经常采用从0时到24时的计时法,通常叫做24时计时法。
2、普通计时法→24时计时法(中午以后+12并去掉时间前面的词)
24时计时法→普通计时法(中午以后—12并加上凌晨、早上、上午、中午、下午、晚上这些词)
例如:
上午8点(普通计时法)→8点(24时计时法)
下午4点(普通计时法)→16点(24时计时法)
3、计算经过时间时,一定把不同的计时法变成相同的计时法再计算。
4、经过时间的小时数(时间段):
结束时间(时刻)-开始时间(时刻)=经过时间(时间段)
5、时间段与时刻的不同:
时间段是一段,时刻是一个点。
6、重要日子必须记住:
1949年10月1日,中华人民共和国成立;
1月1日元旦节;3月12日植树节;5月1日劳动节;6月1日儿童节;7月1日建党节;8月1日建军节;9月10日教师节;10月1日国庆节。
第四单元小数的初步认识
1、1分米表示把1米平均分成10份,每份是米,也就是0.1米。
2分米表示把1米平均分成10份,其中的2份是米,也就是0.2米。
其它的以此类推。
分母是10的分数写成一位小数(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9)。
0.1表示1个十分之一。
2、1厘米表示把1米平均分成100份,每份是米,也就是0.01米。
55厘米表示把1米平均分成100份,其中的55份是米,也就是0.55米。
其它的以此类推。
分母是100的分数写成两位小数(0.01、0.02、0.03……0.98、0.99)。
0.01表示1个百分之一。
3、
(1)比较两个小数的大小:
先看整数部分,整数部分大的小数就大。
整数部分相同的,再比较十分位上的数,十分位上的数大的小数大,十分位上的数相同的再比较百分位上的数······
(2)实际应用
比大小的两种情况:
跑步是数越少越好,跳远、跳高是数越大越好。
3、小数加减法计算:
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后记住在得数中点上小数点。
并且要从低位开始算起。
在小数加减法计算时,出现得数为几点0,例如3.0直接写3就可以了。
体现数学的简洁美。
出现整数减小数的情况,可以把整数看做小数减,不容易出错。
例如:
1—0.7=计算时可以计算1.0—0.7,便于小数点对齐。
4、小数的组成及读法
小数点的左边是它的整数部分,小数点的右边是它的小数部分。
整数部分按照整数的读法来读,小数部分是几就依次读几。
(像读电话号码一样)。
单位转化:
(用大的单位表示不够1,就用小数表示。
)
1元=10角1角=10分1元=100分
1角=0.1元1分=0.1角=0.01元
1米=10分米1分米=10厘米
1分米=0.1米1厘米=0.1分米=0.01米
5、小数不一定比整数小。
(如:
5.1>5;1.3>1等)
6、会在数轴上表示数
第五单元线和角
1、线段、射线、直线区别:
线段有两个端点,不能延长,可测量;
射线有一个端点,可以向一端无限延长,不可测量;
直线没有端点,可以向两端无限延长,不可测量;
将线段的一端无限延长,就得到一条射线;
将线段的两端无限延长,就得到一条直线。
线段和射线是直线的一部分。
2、角的定义:
从一点引出两条射线所组成的图形叫做角。
3、角的组成:
从一点引出两条射线就组成一个角,这个点叫做角的顶点,这两条射线叫做角的边。
角有一个顶点和两条边,角的两边可以无限延长。
角通常用符号“∠”来表示。
4、度量角的工具是量角器,角的计量单位是“度”,用符号“°”表示。
量角时要做到“点点重合,线边重合”。
角的大小与边的长短无关,与两边叉开的大小有关。
在放大镜下看角,角的度数不变。
5、画角的方法:
先画一条射线作角的一条边;量角器的中心点与角的顶点重合,0°刻度线与射线重合;看好刻度点上点,再画出另外一条边;标上角的符号及度数。
6、平角、周角定义:
一条射线绕着它的端点旋转,从开始旋转到恰好成一条直线时行程的角叫作平角;一条射线绕着它的端点旋转一周所成的角叫作周角。
7、周角=360°,平角=180°,钝角大于90°小于180°,直角=90°锐角小于90°一个周角=2个平角=4个直角
8、过一点可以画无数条直线,过两点只能画一条直线。
过一可以画无数条
射线。
第六单元三位数乘两位数
1、三位数乘两位数积可能是(四)位数,也可能是(五)位数。
2、验算:
交换两个因数的位置。
3、口算:
15×200=?
(方法:
把0前面的数相乘,再在乘积的末尾添0,注意添几个0。
)
4、估算:
118×22,可以先把因数看成整十、整百的数,再去计算。
→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。
)
5、有大约字样的一般要估算。
(信息、问题中中都有大约用准确算)
6、凡是问够不够,能不能等的题,都要三大步:
①计算、②比较、③答题。
→别忘了比较这一步。
7、积的变化规律:
小结:
一个因数不变,另一个因数乘(或除以)几,得到的积就等于原来的积乘(或除以)几。
这叫做积的变化规律。
利用积的变化规律可以使解决问题变得简单。
(1)例如:
根据67×35=2345,直接写出下题的得数。
670×35=67×3500=670×350=
如果两个因数都发生变化,可以分两步,先让一个因数发生变化,得出一个结果,然后根据第一步的结果,再让另一个因数发生变化,最后就能求出结果。
(2)一个长方形草坪的面积是120平方米,将这个长方形草坪的长扩大到原来的2倍,宽不变。
扩建后草坪的面积是多少平方米?
(这个也是积的变化规律的应用)
8、一个因数末尾有0的笔算方法:
(简便写法)
因数末尾有0,先把前面的数相乘,然后看两个因数末尾一共有几个0,就在积的末尾添上几个0;注意列竖式计算时,末尾的0放在一边,0前面的数的数位要对齐。
荡秋千综合实践活动:
在相同的时间内,荡秋千的次数与质量无关,与绳长有关。
第七单元平行与相交
1、同一平面内两条直线的位置关系:
平行与相交
2、在同一平面内不相交的两条直线互相平行,其中一条直线是另一条直线的
平行线。
3、两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直
线的垂线,这两条直线的交点叫做垂足。
4、两点之间线段最短。
5、点到直线的距离:
从直线外一点到这条直线所画的垂直线段最短,这条垂
直线段的长度叫做点到直线的距离。
6、平行线间的距离处处相等。
画图的题型及方法:
一、画垂线的方法:
(一靠二移三连线)
1、找——找到三角板的两个直角边
2、靠——三角板的一条直角边靠在已知直线上;
3、移——平移,将三角板沿着已知直线的方向向已知点平移,使另一条直
角边经过该点;
4、画——沿着另一条直角边过点画直线;
最后别忘了标直角符号。
1、过直线上一点画这条直线的垂线方法?
答:
把三角尺的一条直角边靠近直线,三角尺上的直角顶点靠近直线上的点,然后用笔沿另一条直角边画出直线就可以了。
2、过直线外一点画这条直线的垂线方法?
答:
把三角尺的一条直角边靠近直线,
三角尺上的另一条直角边靠近相交直线外的点,然后用笔沿这条边画直线就可以了。
(注意:
因为是画垂线,直线没有端点所以过点要露头)
3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做点到直线的距离。
题型:
做出点到直线的距离,并测量长度
画图方法:
先画出垂直线段,再测量长度
注意:
因为是画的垂直线段,线段有端点,所以过点不露头
4、根据生活实际画点到点的最短的路及点到直线的最近的路
画图方法:
点对点最短的路——两点之间,线段最短
点到直线最近的路——点到直线的距离
二、画平行线的方法:
怎样画平行线?
答:
可以用直尺和三角尺来画平行线,先把三角尺的一条直角边紧靠直线,再把直尺紧靠三角尺的另一条直角边,这时沿直尺平移三角尺,再画一条直线就可以了。
1、放——三角板的一条直角边(较长的)放在已知直线
2、靠——将直尺靠在三角板的另一条直角边(较短的)上;
3、移——平移,将三角板沿着直尺的方向向已知点平移,使直角边(较长)经过已知点;
4、画——沿着三角板较长直角边画直线,所画的直线就是已知直线的平行线。
第八单元除数是两位数的除法
1、只要是求平均分就用(除法)计算。
2、注意解决问题中如果有“大约”等字,一般是要求估算的。
3、被除数末尾有几个0,商的末尾不一定就有几个0。
(如:
300÷5=60)被除数中间有0,商的中间不一定就有0。
(如:
105÷5=21)
4、笔算除法:
(1)余数一定要比除数小。
(2)除法验算:
→用乘法
①没余数:
商×除数=被除数;
②有余数:
商×除数+余数=被除数→验算时别忘了加余数,横式上结果要写准。
(3)0除以(任何不是0的)数都得0。
→0不能做除数
(一)、笔算除法:
1、除数是两位数的除法
(1)除到被除数的哪一位,就把商在哪一位上面;
(2)每求出一位商,余下的数必须比除数小。
2、试商时,一般将除数看作最接近的整十数来试商,
3、□53÷56,若商是一位数,□里可以填(5,4,3,2,1),最大是(5);
若商是两位数,□里可以填(6,7,8,9),最小是(6)。
439÷□4,若商是一位数,□里可以填(4,5,6,7,8,9),最小是(4);
若商是两位数,□里可以填(3,2,1),最大填(3)。
4、被除数÷除数=商……余数
则被除数=商×除数+余数
除数=(被除数-余数)÷商
商=(被除数-余数)÷除数例2:
一个数是786,除以24得到余数是18,求商是多少?
答案:
(786-18)÷24
=786÷24
=32
(二)、商不变的规律:
被除数和除数同时乘或除以相同的数(0除外),商不变。
叫做商不变的规律(或者叫做商不变的性质)。
注意:
余数是变化的,也是乘或除以相同的数。
例如10÷3=3……1
100÷30=3……10被除数和除数都乘10,商不变,余数也乘10
例1:
根据第一个算式的结果,直接写出第二、第三个算式的得数。
300÷25=3
(18×2)÷(6×2)=3
(18×3)÷(6×3)=3
练习:
480÷10=48
(480÷2)÷(10÷2)=
(480÷5)÷(10÷5)=
在括号或者□里填适当的数。
(1)24÷8=(24×2)÷(8×□)
(2)360÷60=36÷()
(3)96÷6=960÷()=()÷600=()÷2
还可以使计算简便,例如:
300÷25=(300×4)÷(25×4)=1200÷100=12
(三)、估算
问:
三位数除以两位数的除法怎样估算?
答:
一般情况下,被除数看作整百数(或几百几十数),除数看作整十数,在相除。
注意,估的数一般能整除才行。
例:
估算593÷18≈?
答:
可以这样估600÷20,而不是590÷20,因为590除以20不能整除,口算不方便,这样估就没有意义了。
第九单元解决问题
一、做解决问题时:
1、从问题入手,自己问自己→要想求出这个问题,必须先知道哪些信息;2、从图中找信息;3、并不是所有的信息都有用;4、题目中没有给的信息不能直接用;
5、画出关键词;6、列综合算式时:
要思考先算哪一步,要不要加上小括号“()”。
7、相遇问题也是行程问题,它包含两个速度和一个相遇时间。
解决这类问
题时,可以用画线段图的方法帮助分析题意。
(审题时一定要看清是相向而行,还是背向而行、同向而行)
课本100.101.102页的题目一定要做得很熟练。
二、用到的数量关系
1、速度、时间与所行的路程之间的关系:
速度×时间=路程路程÷时间=速度路程÷速度=时间
第十单元混合运算
1、单价、数量与总价之间的关系:
单价×数量=总价总价÷单价=数量总价÷数量=单价
2混合运算:
运算顺序:
既有小括号又有中括号,要先算小括号再算中括号,然后再算乘除法,最后算加减法。
只有加减法(或乘除法)的时候,同级要从左到右,依次计算。
例1:
40+60×340+60×325×4÷25×425×4÷25×4
=100×3(错误!
)=40+180=100÷100(错误)=100÷25×4
=300=220=1=4×4
例2:
148-48×2148-48×2=16
=100×2(错误!
)=148-96
=200=52
混合运算简单记:
(1)同级运算从左到右
(2)异级运算先二后一
(3)有括号先里后外,先中(中括号)后小(小括号)。
第十一单元条形统计图
(一)简单的数据分析
1、统计表可以详细记录各种数据,条形统计图不仅可以清楚地表示每种数据的多少,还可以表示各种数据之间的差距。
2、在条形统计图中,可以用1格表示1个单位;绘制条形统计图,如果数据较大,可以用1格表示多个单位;
3、在进行简单的数据分析之前,必须弄清楚统计图中所包含的数据情况,再根据这些数据来进行分析。
4、注意:
如果用涂色的方法表示统计图,建议用铅笔画阴影,并且涂完后,要在条形统计图上标出数据,不管有没有要求都要标上数据。
智慧广场——植树问题
植树问题一定要理解建立好解决问题的模型:
(课本125页的题目一定要做熟)
用画图的方法解决能帮助理解题意。
1、如果两端都植树,间隔数+1=棵数,间隔数=棵数—1;
2、如果一端植树,间隔数=棵数;封闭性防护栏问题:
间隔数=棵数
3、如果两端都不植树,间隔数—1=棵数,间隔数=棵数+1;
此种类型的题关键是求间隔数,认真审题,一是栽两端、一端还是两端都不栽。
二是在路的一旁(侧)还是路的两旁(侧)。
端和旁的意思是不同的。
类似于植树问题的有:
栽树、摆花盆、插旗子,安路灯、锯木头、挂钟敲几下计时、楼层之家的台阶,同学们站队。
也就是说只要有间隔的,不管是空间间隔,还是时间间隔,还是物体之间的间隔,这一类的问题都属于植树问题。
拓展题目类型:
1、两座楼房之间相距40米,每隔4米栽一棵松树,能栽多少棵树?
2、挂钟6点钟敲6下,10秒钟敲完。
那么9点钟敲9下,几秒敲完?
3、将一根木头锯成4段需要9分钟,照这样的速度,锯成7段需要几分钟?
4、10名男生排成一队,每两名男生之间站一名女生,可以站几名女生?
5、每一层有18个台阶,李红从1楼到4楼,一共需要走多少个台阶?
6、一个正方形水塘边长为40米,在它四边每隔4米栽一棵树,而且4个角都要各栽1棵,需要多少棵树?
7、在一条平直马路两旁从头到尾植树,共植树100棵(两端都栽),正好每隔3米一棵,两侧种的棵数同样多,那么,这条马路长多少米?
(可根据下图思考)