水力压裂实施方案.docx

上传人:b****7 文档编号:25486425 上传时间:2023-06-09 格式:DOCX 页数:18 大小:319.89KB
下载 相关 举报
水力压裂实施方案.docx_第1页
第1页 / 共18页
水力压裂实施方案.docx_第2页
第2页 / 共18页
水力压裂实施方案.docx_第3页
第3页 / 共18页
水力压裂实施方案.docx_第4页
第4页 / 共18页
水力压裂实施方案.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

水力压裂实施方案.docx

《水力压裂实施方案.docx》由会员分享,可在线阅读,更多相关《水力压裂实施方案.docx(18页珍藏版)》请在冰豆网上搜索。

水力压裂实施方案.docx

水力压裂实施方案

二〇一二年六月

南桐矿业公司鱼田堡煤矿

34区-350m西抽放巷道高压水力压裂技术推广应用

实施方案

前言

由于南桐矿业公司鱼田堡煤矿煤层透气性差,造成采用单一的穿层钻孔、水力割缝等工艺后预抽效果不理想,工程量大。

同时部分区域受地质构造影响,以中风压为主的区域防突措施难以实施到位,造成较大的空白带。

因此,鱼田堡煤矿将在3504W4段工作面顶板的矽质灰岩抽放巷道即34区-350m西抽推广应用“高压水力压裂技术”。

以期望在保护层突出煤层中全面达到“增透、卸压、消突”的作用,从而真正实现快速达标、经济防突的目的。

1矿井概况及压裂条件

1.1矿井基本情况

鱼田堡煤矿隶属于重庆市能源投资集团南桐矿业公司。

该矿地处重庆市万盛经济技术开发区。

矿井位于重庆市南东面,方位152°,距万东镇4.0Km,距重庆市主城区130Km。

矿井于1956年建矿,1959年正式投产,设计能力60万吨/年,2006年核定生产能力39万吨/年,现实际生产能力约33万吨/年。

矿井开采古生代二叠纪乐平统煤系煤层,煤系厚80~100m,含煤6层,从新到老分别为1~6号煤层。

井田内1~3号煤层不可采;4号、6号煤层稳定可采,5号煤层局部可采,其中4号煤层为主采层。

1.2矿井生产系统现状

1.2.1矿井开拓、开采

矿井采用立井+暗斜井的综合开拓方式,在井田中部布置主、副立井到二水平(+331m~-100m标高);三水平(-100m~-350m标高)在井田中部布置4个暗斜井;目前,矿井采掘活动主要集中在三水平四区,采掘活动相对比较集中。

为了缓解这一不利局面以及矿井的长远发展,矿井开展了四水平延深工程。

目前,四水平各采区以剃头下座的方式已分别延深至-400m、-431m、-465m以及-600m标高。

1.2.2矿井通风

矿井通风方式为用两翼对角抽出式,在井田两翼及采区布置了专用回风道。

1.2.3矿井供水系统

矿井供水供水方式主要为采用4寸无缝钢管从+150m水平利用自压方式向-100m水平及主要用水地点供水,在-100m建有专门的防尘水池向-350m水平各用水点供水,水源充足。

1.2.4矿井供电系统

矿井井下根据生产需求,在-100米水平和-350米水平各设有一个中央变电所,水平各采区变电所设于采区石门附近,与中央变电所联系,为各采区运输设备、掘进装岩机和一通三防设备设施等供电。

1.2.5矿井排水系统

矿井排水方式为分水平集中排水,现矿井年平均涌水量750t/h,总排水能力2170t/h。

1.2.6矿井抽采系统

矿井建立了地面永久抽采站以及井下移动瓦斯抽放站,对瓦斯来源采取分源抽放,即地面永久抽放站抽放卸压瓦斯,井下移动瓦斯抽放站抽放预抽瓦斯。

同时各主要抽采地点及管路可随时实现并网抽放。

1.2.7矿井监控监控系统

矿井安全监控系统经2003年国债、2005年国债两次改造、完善,2008年监测系统进行升级(KJ101型升级为KJ1O1N型),经国债安装和逐步完善后KJ101N系统能基本满足目前安全需要。

1.2.8矿井通讯系统

矿井通讯系统目前约有200门电话,地面主机型号为MTD-958,主机通过交接箱分接至地面和井下。

1.3地质特征

1.3.1地层及构造

矿区的地层除了缺失泥盆系、石炭系外,其余新老地层均有出露,出露地层由老至新分别为志留系韩家店组;二叠系下统梁山组、栖霞组、茅口组,上统龙潭组和长兴组;三叠系下统玉龙山组、飞仙关组、嘉陵江组,中统雷口坡组,上统须家河组;侏罗系下统白流井群。

矿井西翼与南桐煤矿井田接壤,东翼与东林煤矿井田接壤,鱼田堡煤矿成东西走向,处于八面山向斜轴部,轴部煤层走向东西,倾角缓,八面山向斜东翼向鸦雀岩扭折带过度,西翼扭折岩层走向NE30°—40°,倾角较陡约40°,向鱼塘角扭折带过度。

受其影响,井田范围内出现隐伏小断层三条,分别是f1、f2、f3断层。

1.3.2水文地质

鱼田堡煤矿水文地质条件西面简单、东面比较复杂,受大气降雨影响明显,年降雨量1000~1400mm,平均1200mm,对矿井开采有一定的影响,矿井主要含水层为顶部的长兴灰岩、下部的茅口灰岩。

1.3.3煤层及顶底板

本次拟定压裂煤层为5#煤层,也是目前矿井作为保护层开采的煤层。

该煤层位于煤系中下部,属局部可采煤层,煤厚2~0.51m,平均0.7m,坚固系数0.2—0.46。

煤层结构复杂,自上而下分为3个自然分层,其中二分层多为构造煤,光泽暗淡,在二分层在三分层之间多数范围含有夹矸一层,厚约0.05—0.2m,其余两个自然分层属于原生结构煤。

直接顶为2.49m的钙质页岩,老顶10.39m的硅质灰岩,底板为7.61m的铝土页岩,煤层破坏类型

类。

1.3.4瓦斯

鱼田堡煤矿属于煤与瓦斯突出矿井。

可采煤层均为突出煤层,4号煤层为强突出煤层,共发生突出221次,最大突出强度8765吨,最大瓦斯涌出量350万m3。

5号煤层在可采区内为相对较弱突出层,共发生突出194次,其中打钻突出2次,最大突出强度343吨,最大瓦斯涌出量2.18万m3,在压裂实施抽放巷道邻近的34区-350m东抽实测瓦斯压力为3.6MPa。

6号煤层为中等突出层,共发生突出321次,其中延期突出18次,打钻突出7次,最大突出强度895吨,最大瓦斯涌出量7.8万m3。

各煤层瓦斯参数详见表1.

表1矿井煤层瓦斯参数表

项目

4号煤层

5号煤层

6号煤层

煤层原始瓦斯压力(MPa)

10-15

3-5

4-7

煤层瓦斯含量(m3/t)

18-22

14-16

15-18

始突标高(m)

+368

+81

+290

始突深度(m)

74

291

144

平均突出强度(t)

175

37.2

45.2

延期突出(次)

9

0

18

1.3.5地温、地压

本区地温梯度为1.45℃~1.91℃/100m,平均1.71°C/100米;地温增温将52.36~98.31m/°C,平均65.29m/°C。

结论是本区属地温正常区,无异常区出现。

-350m水平岩温为32.85℃,-600m水平岩温为36.68℃。

矿井未出现冲击地压区。

1.4压裂区概况

1.4.1巷道布置

此次压裂的煤层为作为矿井保护层开采的5#煤层,该煤层顶底板岩性产状、分类、顶底板岩性等详见图1、2。

图1压裂区域5#煤层结构图

图2压裂区域5#煤层综合柱状图

根据矿井实际条件,压裂地点选在34区-350m西抽放巷道距-350mW4石门518.5m至662.4m范围内,该抽放巷道布置在5号煤层顶板的矽质灰岩中,位于-350m水平西四石门以西,巷道净宽3.6m、净高2.5m,采用锚杆支护,详见图3。

图3巷道断面布置图

34区-350m西抽放巷道对应工作面为3504W4段,该工作面区域5#煤层埋深约为660m。

该工作面位于井田三水平四区,上接3504W3段工作面(回采中),下接4504W1段工作面(未开采),东邻3504E4段工作面(3504E4段机巷工作面拟进场作业),西面为矿井井田边界。

目前,该抽放巷道大部分区域已施工机巷条带预抽钻孔及“31.5MPa”泵压系统的水力压裂试验钻孔,本次水力压裂区域选定为未施工任何钻孔且能满足高压水力压裂要求的剩余段抽放巷道内,详见图4:

压裂区域巷道及采掘关系示意图。

图4压裂区域巷道布置及采掘关系图

1.4.2通风系统

水力压裂技术实施区域已形成稳定的全负压通风系统,目前,拟选压裂巷道配风量为350m3/min左右,详见图5:

压裂区域通风系统示意图。

图5压裂区域通风系统示意

1.4.3供水系统

压裂地点安设有完备的供水管路系统,DN50水管的流量约为60-70m3/h,能够满足水力压裂连续供水的需要,详见附图6:

压裂区域供水系统示意图。

图6压裂区域供水系统示意图

1.4.4监测系统

压裂区域已形成了可靠的瓦斯监测系统,并且在各压裂区域对应的石门安设有监测主机,压裂前需完善视频监控系统,详见图8:

监测监控系统示意图。

图8压裂区域瓦斯监测监控系统示意图

1.4.5供电系统

-350mW4石门设有采区变电所,实施前根据压裂设备的情况需进行适当的调整和完善,详见图7:

压裂区域供电系统示意图,所需供电材料详见表2。

图7压裂区域供电系统示意图

表2水力压裂所需供电材料计划表

序号

名称

规格

数量

生产厂家

备注

1

高压开关

PBG630-6Z

2台

济源市华语矿业电器有限公司

2

变压器

KBSG2-T-500/6

2台

南京中电电器特种变压器厂

3

低压开关

KBZ-630/1140

5台

温州江南矿业有限公司

4

软启动器

KJR-400/1140

1台

5

电缆

MYP-1140,3*150mm2+1*50

1000m

1.4.6通讯系统

压裂区域对应的石门均安设有直通调度室的防爆电话,压裂时可根据需要在压裂区域操作点安设一部直通调度室的防爆电话,详见图9:

通讯系统示意图。

图9压裂区域通讯系统示意图

1.4.7抽采系统

压裂区域已形成了完备的抽放系统,能满足压裂后瓦斯抽放需要;同时,压裂区域的抽放系统可随时实现地面永久瓦斯抽放系统与井下移动瓦斯抽放系统的并网与分网抽放。

2、压裂工艺

2.1压裂参数及压裂方式

根据矿井前期“31.5MPa”水力压裂情况、压裂煤层物理性质及巷道埋深计算等情况综合考虑,压裂压力选择为35—50MPa;注水量选在为5m3/h—40m3/h(预计);压裂方式为高压注水。

2.1.2根据煤层埋深计算需要压裂水压。

水力压裂注水压力根据试验地点地应力和瓦斯压力计算。

计算公式:

式中,pB为煤层破裂压力,

为煤层垂直地应力,p0为煤层的孔隙压力,S为煤层的抗张强度。

压裂地点埋深约为660m,因此,初步确定为煤体注水压力为:

25~30MPa,压裂时应大于该压力。

2.2压裂设备

2.2.1高压泵选型

通过总结鱼田堡煤矿前期试验“31.5MPa”水力压裂的情况,同时结合在松藻公司考察情况,拟选用宝鸡航天动力泵业有限公司生产的型号为BYW1100/50型的压裂泵。

同时高压压裂泵必须配有与高压泵站相匹配的控制箱。

高压管路选用压力匹配的高压缠丝胶管或高压钢管。

压裂设备选型详见表3。

表3压裂设备计划表

序号

名称

规格

数量

生产厂家

4

煤矿用漏斗下料注浆泵

YFK

1台

重庆煤科院

5

水泥

425硅酸盐及白色硅酸盐水泥

若干

南桐特种水泥厂

6

高压压裂泵

BYW1100/50

1台

宝鸡航天动力泵业有限公司

7

高压缠丝胶管

内径32mm、70MPa

1500m

河北衡水亚冠或与泵站配套

8

高压缠丝胶管

内径25mm、70MPa

100m

9

无缝钢管

25mm*8.5mm-50MPa/2m

100m/孔

重庆迈尔

10

无缝钢管

25mm*13mm-50MPa/2m

100m/孔

11

变径管

25mm*13mm-50MPa/0.5m

20根

12

筛管

25mm*8.5mm-50MPa/2m

20根

12

导向堵头

25mm-50MPa

20件

14

孔口连接座

25mm-50MPa

50件

15

超高压截止阀

QJ-25-50MPa

10件

16

连接直通

KJR25-50MPa

500件

17

水表

Φ100mm

4个

18

压力表

高压耐震60MPa

20个

2.2.2压裂管

压裂孔外压裂管路选用Φ32高压缠丝管配合相应的快速接头连接而成;孔内压裂管前10m选用DNΦ25*13的无缝钢管,剩余孔段选用DNΦ25*8.5的无缝钢管,两种规格无缝钢管采用变径管组成;孔内与孔外的压裂管采用孔口连接座连接成整个压裂管路。

压裂管选型详见表3,压裂管路连接详见附图10:

压裂管线布置图。

2.2.3平面布置

压裂泵安设在34区-350m东抽放巷道适当位置。

详见附图10:

压裂管线布置图。

图10压裂管线布置图

2.3压裂孔

2.3.1压裂孔布置

(1)钻孔布置方式

鉴于抽放巷道的现场情况,同时结合鱼田堡进行水力压裂试验数据,在实施水力压裂技术前分别布置1个压裂钻孔(钻孔终孔点位于待掘机巷轮廓线以上10m位置,目的在于利用水力压裂处理机巷条带的同时考察压裂效果及半径)。

待压裂结束后,在预计的压裂影响范围(半径30m)内沿走向30m布置考察钻孔,以此来考察压裂影响范围。

压裂钻孔施工参数及要求详见图11-1、11-2:

压裂钻孔布置图以及表4:

钻工施工参数表。

2.3.2考察孔布置方式

待压裂结束后,在预计的压裂影响范围(半径30m)内沿走向30m布置考察钻孔,以此来考察压裂影响范围。

若未达到预期压裂范围,则采取由远及近向压裂孔位置重新布孔。

压裂钻孔施工参数及要求详见图11-1、11-2:

压裂钻孔布置图以及表4:

钻工施工参数表。

表4钻工施工参数表

参数

孔号

方位角

(°)

倾角

(°)

孔径

(m)

见煤

孔深

(m)

距巷底

开孔高

(m)

施工

次序

钻孔功能

考察孔

α-90

10

65

36

1.6

压裂后

压裂后参数考察数据

压1

α-90

10

108及75

36

1.6

压裂前

压裂钻孔

备注

(1)由考察孔测试煤层a、b值、水分、自然瓦斯涌出量、衰减系数、透气性系数等;压1孔压裂前测试自然流量、孔内瓦斯浓度。

压裂后再次测试同样参数;

(2)根据第一个施工钻孔的实际数据修正剩余钻孔的施工参数;

11-1压裂钻孔布置示意图

11-2压裂钻孔布置示意图

(2)钻孔施工的安全技术措施

施工工艺

钻孔采用矿用zdy—1200s型全液压钻机进行施工回转式钻进水式排渣工艺。

施工要求

钻孔开孔点应选择在岩石完整的位置。

压裂钻孔开孔孔径不小于Φ108mm,深度不小于10m,其余段孔径为Φ75;其余钻孔孔径不小于Φ65mm,每个钻孔必须过完全煤且进入底板。

其中,压裂钻孔进入底板距离≮1m,其余钻孔≮0.5m。

2.3.2压裂孔封孔

(1)封孔方式及工艺

钻孔孔口段约1m孔段采用人工进行封孔,封孔材料为马丽散或黄泥+木楔等。

其余孔段采用机械方式进行封孔,封孔材料为425#普通硅酸盐水泥与白水泥(比例=3.5:

1)进行封孔,封孔长度应根据压裂钻孔的长度进行确定,具体为钻孔封孔至5#煤层顶板钙质页岩与灰岩交界面或直接封至煤岩交接面,详见图12。

图12-1压裂钻孔封孔示意图

2.4压裂剂

2.4.1压裂液

选择矿井防尘水作为压裂液。

2.4.2支撑剂

此次压裂暂不考虑支撑剂的使用。

3.安全措施

3.1防止高压事故措施

(1)压裂过程出现动力现象时,必须立即切断所有电源,所有人员必须立即撤出。

(2)压裂前,必须对高压压裂管路进行试压,防止漏液伤人。

(3)所有压裂工作结束后,严禁拆除钻孔的封孔装置和压裂管路,只有待孔口压力降到0MPa后才能拆除相关的装置,并且要及时启动排水设备进行排水工作。

3.2防治瓦斯及顶板事故措施

(1)实施水力压裂当班,地面瓦斯监测室必须随时观察受压裂区域及回风区域的瓦斯变化情况,如有异常,必须及时通知井下压裂人员停止压裂,严禁瓦斯超限作业。

(2)压裂结束40分钟后,首先由2救护队员和2名试验人员进入压裂地点,检查巷道的支护情况和瓦斯情况,重点检查压裂地点20m范围内的情况,只有当检查范围内的瓦斯浓度小于1.0%时,并且巷道支护良好时,才能解除警戒,恢复工作。

3.3消防措施

设备安装位置必须放置2台8公斤干粉灭火器和2个体积不少于0.5m3的砂箱,每个不少于15个沙袋。

试验前,必须清除周围所有可燃物。

4.其它

(1)在3504W4段压裂前,施工取样孔测定瓦斯含量、水分、f以及ΔP等参数。

具体布孔方式为在-350mW4西抽石门压裂范围以外选择一个点且20m范围内无钻孔施工影响。

(2)鉴于压裂区域抽放巷道实际情况,不具备条件施工测压钻孔,故煤层压力比照压裂区域邻近抽放巷道34区-350m东抽(埋深接近)实测的瓦斯压力(3.6MPa)进行先关数据分析。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1