当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,
∴b,即b≥400.
综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.
5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:
万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:
万元)与加工数量t(单位:
吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.
(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;
(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).
①求w关于x的函数关系式;
②若该公司获得了30万元毛利润,问:
用于直销的A类杨梅有多少吨?
(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获
将A(2,12)、B(8,6)代入得:
,解得
∴y=﹣x+14;
②当x≥8时,y=6.
所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:
y=
(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.
①当2≤x<8时,
2wA=x(﹣x+14)﹣x=﹣x+13x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA+wB﹣3×20
=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,
wA=6x﹣x=5x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA+wB﹣3×20
=(5x)+(108﹣6x)﹣60=﹣x+48.
∴w关于x的函数关系式为:
w=.
2
②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.
∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.
(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,
则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,
∴3m+x+[12+3(m﹣x)]=132,化简得:
x=3m﹣60.①当2≤x<8时,
2wA=x(﹣x+14)﹣x=﹣x+13x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA+wB﹣3×m
2=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m
2=﹣x+7x+3m﹣12.将3m=x+60代入得:
w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,
此时m=,m﹣x=;
②当x≥8时,
wA=6x﹣x=5x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12
∴w=wA+wB﹣3×m
=(5x)+(6m﹣6x﹣12)﹣3m
=﹣x+3m﹣12.
将3m=x+60代入得:
w=48
∴当x>8时,有最大毛利润48万元.
综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大
6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:
y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?
最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
【解答】解:
(1)由题意得出:
w=(x﹣20)?
y
=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:
w=﹣2x2+120x﹣1600;
22
(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,
∵﹣2<0,
∴当x=30时,w有最大值.w最大值为200.
答:
该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.
2
3)当w=150时,可得方程﹣2(x﹣30)2+200=150.
解得x1=25,x2=35.
∵35>28,
∴x2=35不符合题意,应舍去.
答:
该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
7.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)⋯30405060⋯
销售量y(万个)⋯5432⋯
同时,销售过程中的其他开支(不含进价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?
y=﹣x+8;
【解答】解:
(1)根据表格中数据可得出:
y与x是一次函数关系,设解析式为:
y=ax+b,
则
,
,
解得:
故函数解析式为:
(2)根据题意得出:
z=(x﹣20)y﹣40
=(x﹣20)(﹣x+8)﹣40
=﹣x2+10x﹣200,
2
=﹣(x2﹣100x)﹣200
=﹣[(x﹣50)2﹣2500]﹣200
=﹣(x﹣50)2+50,
故销售价格定为50元/个时净得利润最大,最大值是50万元.
3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:
x1=40,
x2=60.
40≤x≤60.x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.
8.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为
20元/件的新型商品在x天销售的相关信息如表所示.
销售量p(件)p=50﹣x
销售单价q(元/件)当1≤x≤20时,q=30+x
当21≤x≤40时,q=20+
(1)请计算第几天该商品的销售单价为35元/件?
(2)求该网店第x天获得的利润y关于x的函数关系式;
(3)这40天中该网店第几天获得的利润最大?
最大的利润是多少?
【解答】解:
(1)当1≤x≤20时,令30+x=35,得x=10,
当21≤x≤40时,令20+=35,得x=35,经检验得x=35是原方程的解且符合题意
即第10天或者第35天该商品的销售单价为35元/件.
当21≤x≤40时,y=(20+﹣20)(50﹣x)=﹣525,
即y=,
3)当1≤x≤20时,y=﹣x2+15x+500=﹣(x﹣15)2+612.5,
∵﹣<0,
∴当x=15时,y有最大值y1,且y1=612.5,
当21≤x≤40时,∵26250>0,
∴随x的增大而减小,
当x=21时,最大,
于是,x=21时,y=﹣525有最大值y2,且y2=﹣525=725,
∵y1∴这40天中第21天时该网店获得利润最大,最大利润为725元.
9.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:
y=
y1=
若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为
(1)用x的代数式表示t为:
t=6﹣x;当0y2=5x+80;当4≤x<6时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?
最大值为多少?
【解答】解:
(1)由题意,得x+t=6,
∴t=6﹣x;
∵,∴当0此时y2与x的函数关系为:
y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0<6﹣x≤2,即0此时y2=100.
故答案为:
6﹣x;5x+80;4,6;
(2)分三种情况:
①当02
②当22
③当4综上可知,w=;
22
(3)当0∴当x>3时,w随x的增大而减小,
∴没有w最大.
故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为640千元.
10.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:
甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.
(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.
(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?
最大年销售利润是多少?
(3)第二年公司可重新对产品进行定价,在
(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.
【解答】解:
(1)设y与x的函数关系式为y=kx+b(k≠0),
∵函数图象经过点(50,10),(70,8),
∴,
∴,
解得,
所以,y=﹣0.1x+15;
(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,∴,
∴,
解之得45≤x≤65,
145≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),
2
=﹣0.2x2+16x+100,
2
=﹣0.2(x2﹣80x+1600)+320+100,
=﹣0.2(x﹣40)2+420,
∵﹣0.2<0,
∴x>40时,W随x的增大而减小,
∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;
250≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),
2
=﹣0.1x2+8x+250,
=﹣0.1(x2﹣80x+1600)+160+250,
=﹣0.1(x﹣40)2+410,
∵﹣0.1<0,
∴x>40时,W随x的增大而减小,
∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;
22
(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.
又由题意知,50≤x≤65,根据函数与x轴的交点可知50≤x≤60,
即50≤90﹣m≤60,
∴30≤m≤40.
11.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?
当销售单价为多少元时,厂商每月能获得最大利润?
最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
【解答】解:
(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)
=﹣2x2+136x﹣1800,
2
∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800(x>18);
2
(2)由z=350,得350=﹣2x2+136x﹣1800,解这个方程得x1=25,x2=43所以,销售单价定为25元或43元,
将z=﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512(x>18),答;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)结合
(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,
又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,
∵x最大取32,
∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),
答:
每月最低制造成本为648万元.
12.某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售
单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.
(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?
(2)设商家一次购买这