直动式液压往复泵外文翻译.docx

上传人:b****9 文档编号:25077270 上传时间:2023-06-04 格式:DOCX 页数:18 大小:189.28KB
下载 相关 举报
直动式液压往复泵外文翻译.docx_第1页
第1页 / 共18页
直动式液压往复泵外文翻译.docx_第2页
第2页 / 共18页
直动式液压往复泵外文翻译.docx_第3页
第3页 / 共18页
直动式液压往复泵外文翻译.docx_第4页
第4页 / 共18页
直动式液压往复泵外文翻译.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

直动式液压往复泵外文翻译.docx

《直动式液压往复泵外文翻译.docx》由会员分享,可在线阅读,更多相关《直动式液压往复泵外文翻译.docx(18页珍藏版)》请在冰豆网上搜索。

直动式液压往复泵外文翻译.docx

直动式液压往复泵外文翻译

JeffreyJ.Rudolf

HuskyEnergyInc.,

Calgary,Alberta,Canadae-mail:

jeff.rudolf@huskyenergy.ca

TedR.Heidricke-mail:

ted.heidrick@ualberta.ca

BrianA.Flecke-mail:

brian.fleck@ualberta.caDepartmentofMechanicalEngineering,

UniversityofAlberta,Edmonton,AlbertaT6G2G8,Canada

V.S.V.Rajan

AlbertaResearchCouncil,

Edmonton,Alberta,Canada

e-mail:

rajan@arc.ab.caOptimumDesignParametersforReciprocatingPumpsUsedinNaturalGasWells

Experimentalandtheoreticalinvestigationofarecentlypatenteddown-holedirect-actingreciprocatingpumpsystemispresented.Thetechnology,(USPatentNo.5,860,795consistsofoperatingagaswellwithgasandliquidphasesbeingproducedseparatelybyusingthegasphasetopowerapumptobringtheliquidphasetothesurface.ThiswouldincreasethedurationofprofitabilityofmanygaswellsinNorthAmerica.Experimentsandmodelingwereusedtodetermineoptimumdesignparameterstomaintainflowataminimumreservoirpressure;anoptimumarearatioforthegas/liquidpistonsisapproxi-mately40.Theeffectoffrictioninthepumpingsystemwaspredictedtohaveasmalleffectonthisoptimumdesign.Theresultsofthisinvestigationwillnowbeusedtodesignandconstructaprototypeforfieldtesting.͓DOI:

10.1115/1.2000274͔

1Introduction

Liquidloadingisacommonproblemassociatedwithnaturalgasproduction.Liquidloadingoccurswhenagaswellisoperatedinatwo-phaseflow͑predominantlygaswithsomeliquidphase͒configurationandthegasphaselackssufficientmomentumtocarrytheliquidphasetothesurface.

Astheproblemofliquidloadingingaswellsbecomesincreas-inglyimportantinNorthAmerica,arangeoftechnologieshasarisentodealwiththeproblem.ThereviewofLeaandNickens͓1͔givesanexcellentoverviewofsolutionsforliquidloadingin

gaswells.AnewtechnologyhasbeenpatentedbyRidleyetal.͓2–4͔tosolveliquidloadingproblemsingaswells.Thistechnol-ogyconsistsofoperatingthegaswellwithgasandliquidphasesbeingproducedseparatelybyusingthegasphasetopowerapumptobringtheliquidphasetothesurface.

Similarideasandtechnologicalinnovationsaresuggestedforapplicationsinoilwellsfordownholesuckerrodandprogressivecavitypumps͓5,6͔anddownholeseparators͓7͔butareessentiallyforoilproduction.Theworkpresentedhereisanoriginalinnova-tionaimedspecificallyatgaswellswithassociatedliquidproduc-tion.

Inapreviousstudy͓8͔,thefeasibilityofoperatinginthisman-nerforavarietyofNorthAmericanreservoirswasdemonstratedviatheoreticalmodeling.Intheresearchworkdescribedhere,theapplicabilityofdirect-actingreciprocatingpumps͑DARP͒wasinvestigatedforuseinthisconceptthroughbothexperimentalandtheoreticalmodeling.Theresultsobtainedwereextrapolatedtothefieldtodetermineoptimumdesignparametersfora“typical”Albertagaswell.Thisisthenextlogicalstepintheprocessoftakingthisnovelconcepttowardcommercializationandpracticalimplementationwiththegoalofextendingtheprofitablelivesofgaswellsexperiencingliquidloadingproblemsattheendoftheirproducinglife.

2ExperimentalApparatus

Theexperimentalapparatuswasdesignedtomodeladown-holepumpsetatthebottomoftheproductiontubingwheregasandliquidenterthebottomofthewellandareseparatedbygrav-ity.Thegasdrivesthepumpwhichpumpstheliquid.Thegasandliquidphasesexituptheproductionandliquidtubingrespectivelyandflowtothesurface.

Adirect-actingreciprocatingtestpumpwasdesignedandmanufacturedfortesting.AschematicofthispumpisshowninFig.1.

Thetestpumpconsistsoftwoparts:

thepumpitselfandacontrollertoregulatetheflowofgasandthusthereciprocatingmotionofthepump.Thepiston,shownschematicallyinFig.2,hasadiameterof50.8mmandtheplungershaveadiameterof19.05mm.Thepumpingelementhasastrokelengthof111.6mm.Eachpumpingelementweighsapproximately430ganddisplaces31.7cm3perstroke.

Ineachdrivesectiontheplungerreciprocatestopumptheliq-uid.Liquidisbroughtinfromaliquidintakelinethroughacheckvalvethatisthreadedintothesideofeachliquidsection.Liquidisdischargedthroughasecondcheckvalvethatisthreadedintotheendsectionofthepump.

Theendsectionconnectstheliquidsectiontoadischargeline.Proximityprobesareusedtosensethepumpingelementwhenitreachestheendofeachpumpstroke.Theproximityprobessendsignalstoswitchtheflowofgasthroughthesolenoidvalve.Thetestpumpcanbeoperatedusingeitheroneorbothdrivesections.Thisisreferredtoaseithersingle-stageortwo-stageoperation.Insinglestageoperation,onlyonedrivesectioniscon-nectedtothesolenoidvalvetoprovidegaspressuretoitscorre-spondingpumpingelement.Theotherdrivesectionoperatesatambientconditionswithitspumpingelementcarriedalongasa“dummy”piston.Insinglestageoperationthepumphasanarearatioof6.11.Intwostageoperation,bothdrivesectionsarecon-nectedtothesolenoidvalveandeachpumpingelementisdrivenbygaspressure.Intwostageoperationthepumphasanarearatioof12.22.

2.1TestFacilityThefacilityusedtoexaminetheperfor-manceofthetestpumpconsistsoftwoflowloops:

oneforgas͑compressedair͒flowandtheotherforliquid͑water͒.Forthegas

flowloop,thesystemoperatesatambienttemperaturewithamaximumpressureof700kPag.Theliquidflowloopalsooper-atesatambienttemperatureandthemaximumoperatingpressure

ContributedbythePetroleumDivisionforpublicationintheJOURNALOFENERGY

RESOURCESTECHNOLOGY.ManuscriptreceivedbythePetroleumDivision:

September

25,2003;revisedmanuscriptreceived:

April11,2005.AssociateEditor:

A.K.

Wojtanowicz.

JournalofEnergyResourcesTechnologyDECEMBER2005,Vol.127/285

Copyright©2005byASME

was1000kPag.

2.1.1GasFlowLoop.AdiagramofthegasflowloopisgiveninFig.

3.Compressedairentersthegasflowloopfromthecentralairsupplyandflowsthroughafilter,regulator,andintoatank.Theairthenflowsfromthetanktothesolenoidandvalveanditstemperatureismeasured.Fromthesolenoidvalve,airflowsintothedrivesection͑s͒ofthetestpump,drivesthepumpuntilitreachestheendofastrokeandthenreturnstothesolenoidvalve.Theairdischargesfromthedrivesectionofthetestpump,throughthesolenoidvalvetoasecondtankthentoabackpressureregulator.

2.1.2LiquidFlowLoop.AdiagramoftheliquidflowloopisgiveninFig.4.Thefluidmediumiswaterwhichenterstheliquidflowloopfromawatersupply.Thewaterflowsintoa220Linlettanktosupplythepump.Thewaterflowsfromthetanktotheliquidsuctionheaderthenflowsintoeitherthetoporbottomliquidsectionoftheexperimentalpumpthroughacheckvalve.Fromtheliquidsectionthewaterispumpedthroughasecondcheckvalveandintothedischargeheaderthenthroughthereliefvalveandentersa4mtallverticalflowline.Thisflowlineisusedtogenerateadditionalbackpressureonthedischargeline.

3TheoreticalModeling

ThetheoreticalmodelingoftheperformanceofaDARPisbasedonaforcebalanceshownschematicallyinFig.2.Basedonthisforcebalance,threeimportantpumpcharacteristicswereidentified;gasutilization,pumpfrictionpressure,andthermody-namicefficiency.

GasutilizationrefersthevolumeofgasrequiredtodrivetheDARP.Tomodelgasutilizationthefollowingequationisused:

Qg,sc=QlAR

PINTsc

PsczTIN

͑1͒DividingEq.͑1͒bytheliquidvolumetricflowrateresults

inFig.1SchematicofthedirectactingreciprocatingpumpapplicationintheARCtechnology

286/Vol.127,DECEMBER2005TransactionsoftheASME

Rgl=AR

PINTscPsczTIN

͑2͒

whereRglisthegastoliquidratio.Equation͑2͒indicatesthatincreasingthepumparearatioorintakepressurewillincreasetheamountofgasrequiredtodrivethepump.Pumpfrictionpressurereferstotheflowlosses,slidingfriction,andotherirreversibilitiesandareexpressedasaneffectivepumpingpressureactingagainsttheplunger͓9͔

PFRICTION=⌬PGASAR−PPUMP͑3͒

whichtakesintoaccountforcesactingwhilethepumpsystemisinoperation.

ThermodynamicefficiencyoftheDARPisdefinedastheworkdoneonthepumpedliquiddividedbytheworkdonebythedrivegasifitwereexpandedisentropicallyfromPINtoPDIS͑showninFig.2͒.Basedonthis,itcanbeshownthatthermodynamiceffi-ciencyofaDARP

is

Fig.2Schematicofthedirect-actingreciprocating

pump

Fig.3Schematicofthegasflowloop

JournalofEnergyResourcesTechnologyDECEMBER2005,Vol.127/287

␩=

k−1kP˜PUMP

͑1−͑1−P˜PUMP͒k−1/k͒

͑4͒

wherethenormalizedPumpingpressure,P˜PUMP,isdefinedas

P˜PUMPϵ

PPUMPPINAR

͑5͒

Theeffectofnormalizedpumpingpressureonthermodynamicefficiencyforair͑k=1.4͒andnaturalgas͑k=1.25͒isshowninFig.5.Thesignificanceoftheseresultsisthatforagivenpump-ingpressure,thethermodynamicefficiencycanbeimprovedifeitherthepumparearatioorthegasintakepressureisincreased.AswellthermodynamicefficiencydecreaseswithP˜PUMPathigherP˜PUMPvalues.Therefore,therelativeimprovementinthermody-namicefficiencywithincreasedareaorgasintakepressureishigherathigherinitialvaluesofP˜PUMP.However,theefficiencydegradesmoreathighernormalizedpumpingpressureswhenus-ingthegastopowerthepumpduetoitslowerspecificheatratio.Toexaminetheeffectoffrictiononthermodynamicefficiencythefollowingtestcaseispresented.Inthissituation,pumpfrictionpressureisincreasedfrom0%to100%ofthepumpingpressurefornormalizedpressuresof0.5,0.25,0.16,and0.125.Theresultsofthistestcaseusingair͑k=1.4͒asthedrivegasarepresentedinFig.6.Thefigureshowsthatincreasedpumpfrictionresultsinlo

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 制度规范

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1