注塑模具毕业设计外文翻译3.docx

上传人:b****9 文档编号:25056077 上传时间:2023-06-04 格式:DOCX 页数:32 大小:235.65KB
下载 相关 举报
注塑模具毕业设计外文翻译3.docx_第1页
第1页 / 共32页
注塑模具毕业设计外文翻译3.docx_第2页
第2页 / 共32页
注塑模具毕业设计外文翻译3.docx_第3页
第3页 / 共32页
注塑模具毕业设计外文翻译3.docx_第4页
第4页 / 共32页
注塑模具毕业设计外文翻译3.docx_第5页
第5页 / 共32页
点击查看更多>>
下载资源
资源描述

注塑模具毕业设计外文翻译3.docx

《注塑模具毕业设计外文翻译3.docx》由会员分享,可在线阅读,更多相关《注塑模具毕业设计外文翻译3.docx(32页珍藏版)》请在冰豆网上搜索。

注塑模具毕业设计外文翻译3.docx

注塑模具毕业设计外文翻译3

Integratedsimulationoftheinjectionmoldingprocesswithstereolithographymolds

AbstractFunctionalpartsareneededfordesignverificationtesting,fieldtrials,customerevaluation,andproductionplanning.Byeliminatingmultiplesteps,thecreationoftheinjectionmolddirectlybyarapidprototyping(RP)processholdsthebestpromiseofreducingthetimeandcostneededtomoldlow-volumequantitiesofparts.ThepotentialofthisintegrationofinjectionmoldingwithRPhasbeendemonstratedmanytimes.WhatismissingisthefundamentalunderstandingofhowthemodificationstothemoldmaterialandRPmanufacturingprocessimpactboththemolddesignandtheinjectionmoldingprocess.Inaddition,numericalsimulationtechniqueshavenowbecomehelpfultoolsofmolddesignersandprocessengineersfortraditionalinjectionmolding.Butallcurrentsimulationpackagesforconventionalinjectionmoldingarenolongerapplicabletothisnewtypeofinjectionmolds,mainlybecausethepropertyofthemoldmaterialchangesgreatly.Inthispaper,anintegratedapproachtoaccomplishanumericalsimulationofinjectionmoldingintorapid-prototypedmoldsisestablishedandacorrespondingsimulationsystemisdeveloped.Comparisonswithexperimentalresultsareemployedforverification,whichshowthatthepresentschemeiswellsuitedtohandleRPfabricatedstereolithography(SL)molds.

KeywordsInjectionmoldingNumericalsimulationRapidprototyping

1Introduction

Ininjectionmolding,thepolymermeltathightemperatureisinjectedintothemoldunderhighpressure[1].Thus,themoldmaterialneedstohavethermalandmechanicalpropertiescapableofwithstandingthetemperaturesandpressuresofthemoldingcycle.Thefocusofmanystudieshasbeentocreatethe

injectionmolddirectlybyarapidprototyping(RP)process.Byeliminatingmultiplesteps,thismethodoftoolingholdsthebestpromiseofreducingthetimeandcostneededtocreatelow-volumequantitiesofpartsinaproductionmaterial.ThepotentialofintegratinginjectionmoldingwithRPtechnologieshasbeendemonstratedmanytimes.ThepropertiesofRPmoldsareverydifferentfromthoseoftraditionalmetalmolds.Thekeydifferencesarethepropertiesofthermalconductivityandelasticmodulus(rigidity).Forexample,thepolymersusedinRP-fabricatedstereolithography(SL)moldshaveathermalconductivitythatislessthanonethousandththatofanaluminumtool.InusingRPtechnologiestocreatemolds,theentiremolddesignandinjection-moldingprocessparametersneedtobemodifiedandoptimizedfromtraditionalmethodologiesduetothecompletelydifferenttoolmaterial.However,thereisstillnotafundamentalunderstandingofhowthemodificationstothemoldtoolingmethodandmaterialimpactboththemolddesignandtheinjectionmoldingprocessparameters.Onecannotobtainreasonableresultsbysimplychangingafewmaterialpropertiesincurrentmodels.Also,usingtraditionalapproacheswhenmakingactualpartsmaybegeneratingsub-optimalresults.Sothereisadireneedtostudytheinteractionbetweentherapidtooling(RT)processandmaterialandinjectionmolding,soastoestablishthemolddesigncriteriaandtechniquesforanRT-orientedinjectionmoldingprocess.

Inaddition,computersimulationisaneffectiveapproachforpredictingthequalityofmoldedparts.Commerciallyavailablesimulationpackagesofthetraditionalinjectionmoldingprocesshavenowbecomeroutinetoolsofthemolddesignerandprocessengineer[2].Unfortunately,currentsimulationprogramsforconventionalinjectionmoldingarenolongerapplicabletoRPmolds,becauseofthedramaticallydissimilartoolmaterial.Forinstance,inusingtheexistingsimulationsoftwarewithaluminumandSLmoldsandcomparingwithexperimentalresults,thoughthesimulationvaluesofpartdistortionarereasonableforthealuminummold,resultsareunacceptable,withtheerrorexceeding50%.Thedistortionduringinjectionmoldingisduetoshrinkageandwarpageoftheplasticpart,aswellasthemold.Forordinarilymolds,themainfactoristheshrinkageandwarpageoftheplasticpart,whichismodeledaccuratelyincurrentsimulations.ButforRPmolds,thedistortionofthemoldhaspotentiallymoreinfluence,whichhavebeenneglectedincurrentmodels.Forinstance,[3]usedasimplethree-stepsimulationprocesstoconsiderthemolddistortion,whichhadtoomuchdeviation.

Inthispaper,basedontheaboveanalysis,anewsimulationsystemforRPmoldsisdeveloped.Theproposedsystemfocusesonpredictingpartdistortion,whichisdominatingdefectinRP-moldedparts.ThedevelopedsimulationcanbeappliedasanevaluationtoolforRPmolddesignandprocessoptimization.Oursimulationsystemisverifiedbyanexperimentalexample.

AlthoughmanymaterialsareavailableforuseinRPtechnologies,weconcentrateonusingstereolithography(SL),theoriginalRPtechnology,tocreatepolymermolds.TheSLprocessusesphotopolymerandlaserenergytobuildapartlayerbylayer.UsingSLtakesadvantageofboththecommercialdominanceofSLintheRPindustryandthesubsequentexpertisebasethathasbeendevelopedforcreatingaccurate,high-qualityparts.Untilrecently,SLwasprimarilyusedtocreatephysicalmodelsforvisualinspectionandform-fitstudieswithverylimitedfunctionalapplications.However,thenewergenerationstereolithographicphotopolymershaveimproveddimensional,mechanicalandthermalpropertiesmakingitpossibletousethemforactualfunctionalmolds.

2Integratedsimulationofthemoldingprocess

2.1Methodology

InordertosimulatetheuseofanSLmoldintheinjectionmoldingprocess,aniterativemethodisproposed.Differentsoftwaremoduleshavebeendevelopedandusedtoaccomplishthistask.ThemainassumptionisthattemperatureandloadboundaryconditionscausesignificantdistortionsintheSLmold.Thesimulationstepsareasfollows:

1Thepartgeometryismodeledasasolidmodel,whichistranslatedtoafilereadablebytheflowanalysispackage.

2Simulatethemold-fillingprocessofthemeltintoaphotopolymermold,whichwilloutputtheresultingtemperatureandpressureprofiles.

3Structuralanalysisisthenperformedonthephotopolymermoldmodelusingthethermalandloadboundaryconditionsobtainedfromthepreviousstep,whichcalculatesthedistortionthatthemoldundergoduringtheinjectionprocess.

4Ifthedistortionofthemoldconverges,movetothenextstep.Otherwise,thedistortedmoldcavityisthenmodeled(changesinthedimensionsofthecavityafterdistortion),andreturnstothesecondsteptosimulatethemeltinjectionintothedistortedmold.

5Theshrinkageandwarpagesimulationoftheinjectionmoldedpartisthenapplied,whichcalculatesthefinaldistortionsofthemoldedpart.

Inabovesimulationflow,therearethreebasicsimulationmodules.

2.2Fillingsimulationofthemelt

2.2.1Mathematicalmodeling

Computersimulationtechniqueshavehadsuccessinpredictingfillingbehaviorinextremelycomplicatedgeometries.However,mostofthecurrentnumericalimplementationisbasedonahybridfinite-element/finite-differencesolutionwiththemiddleplanemodel.TheapplicationprocessofsimulationpackagesbasedonthismodelisillustratedinFig.2-1.However,unlikethesurface/solidmodelinmold-designCADsystems,theso-calledmiddle-plane(asshowninFig.2-1b)isanimaginaryarbitraryplanargeometryatthemiddleofthecavityinthegap-wisedirection,whichshouldbringaboutgreatinconvenienceinapplications.Forexample,surfacemodelsarecommonlyusedincurrentRPsystems(generallySTLfileformat),sosecondarymodelingisunavoidablewhenusingsimulationpackagesbecausethemodelsintheRPandsimulationsystemsaredifferent.Consideringthesedefects,thesurfacemodelofthecavityisintroducedasdatumplanesinthesimulation,insteadofthemiddle-plane.

Accordingtothepreviousinvestigations[4–6],fillinggoverningequationsfortheflowandtemperaturefieldcanbewrittenas:

wherex,yaretheplanarcoordinatesinthemiddle-plane,andzisthegap-wisecoordinate;u,v,warethevelocitycomponentsinthex,y,zdirections;u,varetheaveragewhole-gapthicknesses;andη,ρ,CP(T),K(T)representviscosity,density,specificheatandthermalconductivityofpolymermelt,respectively.

Fig.2-1a–d.Schematicprocedureofthesimulationwithmiddle-planemodel.aThe3-DsurfacemodelbThemiddle-planemodelcThemeshedmiddle-planemodeldThedisplayofthesimulationresult

Inaddition,boundaryconditionsinthegap-wisedirectioncanbedefinedas:

whereTWistheconstantwalltemperature(showninFig.2a).

CombiningEqs.1–4withEqs.5–6,itfollowsthatthedistributionsoftheu,v,T,Patzcoordinatesshouldbesymmetrical,withthemirroraxisbeingz=0,andconsequentlytheu,vaveragedinhalf-gapthicknessisequaltothataveragedinwholegapthickness.Basedonthischaracteristic,wecandividethewholecavityintotwoequalpartsinthegap-wisedirection,asdescribedbyPartIandPartIIinFig.2b.Atthesametime,triangularfiniteelementsaregeneratedinthesurface(s)ofthecavity(atz=0inFig.2b),insteadofthemiddle-plane(atz=0inFig.2a).Accordingly,finite-differenceincrementsinthegapwisedirectionareemployedonlyintheinsideofthesurface(s)(walltomiddle/center-line),which,inFig.2b,meansfromz=0toz=b.Thisissingle-sidedinsteadoftwo-sidedwithrespecttothemiddle-plane(i.e.fromthemiddle-linetotwowalls).Inaddition,thecoordinatesystemischangedfromFig.2atoFig.2btoalterthefinite-element/finite-differencescheme,asshowninFig

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1