16年级数学公式+定律.docx
《16年级数学公式+定律.docx》由会员分享,可在线阅读,更多相关《16年级数学公式+定律.docx(24页珍藏版)》请在冰豆网上搜索。
16年级数学公式+定律
公式
01几何公式
►长方形的周长=(长+宽)×2
C=(a+b)×2
►长方形的面积=长×宽
S=ab
►正方形的周长=边长×4
C=4a
►正方形的面积=边长×边长
S=a.a=a
►三角形的面积=底×高÷2
S=ah÷2
►三角形的内角和=180度
►平行四边形的面积=底×高
S=ah
►梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
►圆的直径=半径×2(d=2r)
►圆的半径=直径÷2(r=d÷2)
►圆的周长=圆周率×直径=圆周率×半径×2
C=πd=2πr
►圆的面积=圆周率×半径×半径
S=πr×r
►长方体的体积=长×宽×高
V=abh
►正方体的体积=棱长×棱长×棱长V=aaa
►圆柱的侧面积:
圆柱的侧面积等于底面的周长乘高
S=ch=πdh=2πrh
►圆柱的表面积:
圆柱的表面积等于底面的周长乘高再加上两头的圆的面积
S=ch+2s=ch+2πr×r
►圆柱的体积:
圆柱的体积等于底面积乘高
V=Sh
►圆锥的体积=1/3底面×积高
V=1/3Sh
02单位换算
►1公里=1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
►1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
►1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
►1吨=1000千克
1千克=1000克=1公斤=2市斤
►1公顷=10000平方米
1亩=666.666平方米
►1升=1立方分米=1000毫升
1毫升=1立方厘米
►1元=10角
1角=10分
1元=100分
►1世纪=100年
1年=12月
大月(31天)有:
18月
小月(30天)的有:
49月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时
1时=60分=3600秒
1分=60秒
03数量关系
►每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
►1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
►速度×时间=路程
路程÷速度=时间
路程÷时间=速度
►单价×数量=总价
总价÷单价=数量
总价÷数量=单价
►工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
►加数+加数=和
和-一个加数=另一个加数
►被减数-减数=差
被减数-差=减数
差+减数=被减数
►因数×因数=积
积÷一个因数=另一个因数
►被除数÷除数=商
被除数÷商=除数
商×除数=被除数
04特殊问题
►相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
►追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
►流水问题
(1)一般公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
►浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
►利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
►工程问题
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
1÷工作时间=单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几=工作时间
数与数的运算
01概念
►整数
1、整数的意义
自然数和0都是整数。
2、自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:
从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:
从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴准确数:
在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000改写成以万作单位的数是125430万;改写成以亿做单位的数12.543亿。
⑵近似数:
根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:
1302490015省略亿后面的尾数是13亿。
⑶四舍五入法:
求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:
位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
►小数
1、小数的意义
把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
如1/10记作0.1,7/100记作0.07。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。
小数部分有几个数位,就叫做几位小数。
如0.36是两位小数,3.066是三位小数。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的读法:
读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
3、小数的写法:
写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4、比较小数的大小:
先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
5、小数的分类
⑴纯小数:
整数部分是零的小数,叫做纯小数。
例如:
0.25、0.368都是纯小数。
⑵带小数:
整数部分不是零的小数,叫做带小数。
例如:
3.25、5.26都是带小数。
⑶有限小数:
小数部分的数位是有限的小数,叫做有限小数。
例如:
41.7、25.3、0.23都是有限小数。
⑷无限小数:
小数部分的数位是无限的小数,叫做无限小数。
例如:
4.33……3.1415926……
⑸无限不循环小数:
一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:
π
⑹循环小数:
一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:
3.555……0.0333……12.109109……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:
3.99……的循环节是“9”,0.5454……的循环节是“54”。
⑺纯循环小数:
循环节从小数部分第一位开始的,叫做纯循环小数。
例如:
3.111……0.5656……
⑻混循环小数:
循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222……0.03333……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
►分数
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:
读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:
先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴分母相同的分数,分子大的那个分数就大。
⑵分子相同的分数,分母小的那个分数就大。
⑶分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:
真分数、假分数、带分数
⑴真分数:
分子比分母小的分数叫做真分数。
真分数小于1。
⑵假分数:
分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
⑶带分数:
假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
⑴除法是一种运算,有运算符号;分数是一种数。
因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑵由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
⑶分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
⑴分子、分母是互质数的分数,叫做最简分数。
⑵把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑶约分的方法:
用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑷把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑸通分的方法:
先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒数
⑴乘积是1的两个数互为倒数。
⑵求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
⑶1的倒数是1,0没有倒数
►百分数
1、百分数的意义
表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
2、百分数的读法:
读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:
例如:
三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?
0%,则六成五就是65%。
5、纳税和利息:
税率:
应纳税额与各种收入的比率。
利率:
利息与本金的百分率。
由银行规定按年或按月计算。
利息的计算公式:
利息=本金×利率×时间
6、百分数与分数的区别主要有以下三点:
⑴意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
如:
可以说1米是5米的20%,不可以说“一段绳子长为20%米。
”因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数不仅可以表示两数之间的倍数关系,如:
甲数是3,乙数是4,甲数是乙数的( );还可以表示一定的数量。
⑵应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
⑶书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
如:
百分之四十五,写作:
45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:
真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化
⑴小数化成分数:
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
⑵分数化成小数:
用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
⑶一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
⑷小数化成百分数:
只要把小数点向右移动两位,同时在后面添上百分号。
⑸百分数化成小数:
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
⑹分数化成百分数:
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
⑺百分数化成小数:
先把百分数改写成分数,能约分的要约成最简分数。
►数的整除
1、整除的意义
整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
除尽的意义
甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
2、约数和倍数
⑴如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
⑵一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
⑶一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、奇数和偶数
⑴自然数按能否被2整除的特征可分为奇数和偶数。
①能被2整除的数叫做偶数。
0也是偶数。
②不能被2整除的数叫做奇数。
⑵奇数和偶数的运算性质
①相邻两个自然数之和是奇数,之积是偶数。
②奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,
奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
4、整除的特征
⑴个位上是0、2、4、6、8的数,都能被2整除。
⑵个位上是0或5的数,都能被5整除。
⑶一个数的各位上的数的和能被3整除,这个数就能被3整除。
⑷一个数各位数上的和能被9整除,这个数就能被9整除。
⑸能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
⑹一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
⑺一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
5、质数和合数
⑴一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:
2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
⑵一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。
⑶1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
6、分解质因数
⑴质因数
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。
⑵分解质因数
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
通常用短除法来分解质因数。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
⑶公因(约)数
几个数公有的因数叫做这几个数的公因数。
其中最大的一个叫这几个数的最大公因数。
公因数只有1的两个数,叫做互质数。
成互质关系的两个数,有下列几种情况:
①和任何自然数互质;
②相邻的两个自然数互质;
③当合数不是质数的倍数时,这个合数和这个质数互质;
④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
⑷公倍数
①几个数公有的倍数叫做这几个数的公倍数。
其中最大的一个叫这几个数的最大公倍数。
求几个数的最大公约数的方法是:
先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
②几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
求几个数的最小公倍数的方法是:
先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
02性质和规律
(一)商不变的规律
商不变的规律:
在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质
小数的性质:
在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化
1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……
3、小数点向左移或者向右移位数不够时,要用“0"补足位。
(四)分数的基本性质
分数的基本性质:
分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(五)分数与除法的关系
1、被除数÷除数=被除数/除数
2、因为零不能作除数,所以分数的分母不能为零。
3、被除数相当于分子,除数相当于分母。
03运算法则
(一)整数四则运算的法则
1、整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。
加数是部分数,和是总数。
加数+加数=和一个加数=和-另一个加数
2、整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。
被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3、整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。
相同加数的和叫做积。
在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。
一个因数×一个因数=积一个因数=积÷另一个因数
4、整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。
因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
被除数÷除数=商除数=被除数÷商被除数=商×除数
5、乘方:
求几个相同因数的积的运算叫做乘方。
例如3×3=32
(二)小数四则运算
1、小数加法:
小数加法的意义与整数加法的意义相同。
是把两个数合并成一个数的运算。
2、小数减法:
小数减法的意义与整数减法的意义相同。
已知两个加数的和与其中的一个加数,求另一个加数的运算。
3、小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4、小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
(三)分数四则运算
1、分数加法:
分数加法的意义与整数加法的意义相同。
是把两个数合并成一个数的运算。
2、分数减法:
分数减法的意义与整数减法的意义相同。
已知两个加数的和与其中的一个加数,求另一个加数的运算。
3、分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4、分数除法:
分数除法的意义与整数除法的意义相同。
就是已知两个因数的积与其中一个因数,求另一个因数的运算。
(四)运算定律
1、加法运算定律
⑴加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
⑵加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
2、乘法运算定律
⑴乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
⑵乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
⑶乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,即(a+b)×c=a×c+b×c。
⑷乘法分配律扩展:
两个数的差与一数相乘,可以先把它们与这个数分别相乘,再相减,即(a-b)×c=a×c-b×c。
3、减法运算定律
⑴从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。
⑵一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数,即a-b-c=a-c-b。
4、除法运算定律
⑴一个数连续除以两个数,可以除以这两个数的集,即a÷b÷c=a÷(b×c)。
⑵一个数连续除以两个数,可以先除以第二除数,再除以第一个除数,即a÷b÷c=a÷c÷b。
5、其它
a-b+c