电动机发生故障的原因.docx
《电动机发生故障的原因.docx》由会员分享,可在线阅读,更多相关《电动机发生故障的原因.docx(12页珍藏版)》请在冰豆网上搜索。
电动机发生故障的原因
、?
电动机发生故障的原因
3.1故障外因:
(1)电源电压过高或过低。
(2)起动和控制设备出现缺陷。
(3)电动机过载。
(4)馈电导线断线,包括三相中的一相断线或全部馈电导线断线。
(5)周围环境温度过高,有粉尘、潮气及对电机有害的蒸气和其它腐蚀性气体。
3.2故障内因:
(1)机械部分损坏,如轴承和轴颈磨损,转轴弯曲或断裂,支架和端盖出现裂缝。
所传动的机械发生故障(有摩擦或卡涩现象),引起电动机过电流发热,甚至造成电动机卡住不转,使电动机温度急剧上升,绕组烧毁。
(2)旋转部分不平衡或联轴器中心线不一致。
(3)绕组损坏,如绕组对外壳和绕组之间的绝缘击穿,匝间或绕组间短路,绕组各部分之间以及换向器之间的接线发生差错,焊接不良,绕组断线等。
(4)铁芯损坏,如铁芯松散和叠片间短路。
或绑线损坏,如绑线松散、滑脱、断开等。
(5)集流装置损坏,如电刷、换向器和滑环损坏,绝缘击穿。
震摆和刷握损坏等。
4、电动机起动失败的原因分析与对策
以图4—1所示的典型电路,即其一次回路的短路保护是使用断路器QF(或熔断器),控制电器接触器K,热继电器FT作过载保护(有时FT接在电流互感器二次侧回路中)为例,来介绍电动机起动失败的异常现象,并分析其起动失败的原因及采取的对策。
4.1电动机的控制与保护
电动机一起动立即跳闸,即瞬动跳闸:
(1)断路器QF瞬动跳闸QF瞬动跳闸,会使人怀疑是否发生了短路故障,一般而言,设备安装完毕,在有关的开关柜内先将导电物等清除干净,再作绝缘耐压试验,各部位都符合要求后方可带电试车。
所以短路故障可能较少,而且凡发生短路故障均有迹象可查,或有火花。
或有焦烟气味,同时兼有异常声音,事后再作绝缘试验,能发现绝缘已损坏。
最迷惑不解的是一切都好,但断路器仍然发生瞬动跳闸,此时应确认断路器选择的脱扣电流值是否合理。
如40KW的电动机,其额定电流约80A。
在选择用断路器时,选用脱扣电流100A似乎可以了,而且瞬时电流倍数为10,可达1000A,足以躲开电动6IN的起动电流,似乎不应该有问题。
但如果考虑下列因素之后,原因便清楚了。
1断路器整定值,制造允许误差老产品为±20%、新产品为±10%,碰得不巧,所选用的断路器正好是—20%的误差,所以其实际瞬动脱扣电流值得注意1000×(1-20%)=800(A)。
2电动机的起动电流6IN通常指周期分量。
在起始的2至3个周边中。
非周期分量的作用很明显,两者叠加有时峰值可达到额定值的13倍。
即40KW电动机的额定电流为80A,其起始(峰值)起动电流可达13×80=1040(A),超过了上述的800A。
这个峰值出现在起始的1~2个周波,若用熔断器作短路保护是不会分断的,而断路器,特别是带限流特性的高分断能力的断路器,动作都是相当灵敏,会因此而跳闸。
对策是提高断路器脱扣电流值。
现在有一些型号的断路器,其整定值是可调的,(国产的断路器整定值可调的相对较少,进口的断路器整定值可调的较多)改动很方便。
当然更多的是固定不可调的,那只好更换断路器。
(2)熔断器的瞬时熔断与短延时分断如果一次回路是用熔断器作保护电器,一般而言,凡是新设备且熔断器规格选择合理的,在故障时不会发生瞬时熔断的现象。
但下列情况,应予以重视。
熔断器熔断体严重受伤,但还维持着薄弱的电气导通性能,一旦起动电流通过时,该熔断体即熔断。
如果正好是控制回路所接的一相,那么接触器线圈失电,即造成接触器失压跳闸,合闸失败。
有两种情况能使熔断器受伤:
其一是机械外力作用,外壳破裂,导致熔断体受伤,此种情况是可观察到的:
另一种是已在其它场合使用过的熔断器,曾发生过相间短路故障(这种情况发生的可能性极少)。
如果熔断的一相不是控制回路的同相,接触器不会因此而失压跳闸,便表现为电动机缺相运行。
此时电动机转矩不足,无法起动,表现堵转状态,电流值始终维持在6IN左右。
热保护因此而动作,接触器跳闸,起动失败。
此时应更换全部熔断器(因为其它两相熔断器也因长时期6IN工作电流而影响其特性),排除其它原因后再起动。
当然在此过程中,必须注意电流表指示值,确保无其它异常情况。
(3)接触器K瞬动跳闸K起动时瞬动跳闸有两个原因:
1二次回路故障如果从电压表上看,起动时电压没有太大的跌落,原因便在二次回路,可以从以下几个方面逐一检查。
a二次回路熔断器FU熔断:
通常大家不重视二次回路熔断器的选择。
不管接触器的容量大小,选用额定电流2A的熔断体(熔芯)很多。
对于小容量的接触器问题不大,当接触器容量达250A时,接触器线圈起动容量达1KVA以上(如B型接触器),如果使用~220V的线圈,其电流可达到,2A的熔断体便可能熔断,这就造成接触器线圈失电,合闸失败。
此时信号灯均熄灭,很容易判断原因,只要将熔断器换成功10A的即可。
若再发生熔断,那么要寻找其它有什么地方发生了短路。
b合闸回路接触器K自保持触点故障:
K的辅助触点一直用来作接触器合闸后的自保持,但该辅助触点在制造及校核时,历来不被制造商重视,会较多的遇到接触不良的情况。
因它是常开的,接触不良在合闸前是不会发觉的,合闸后的自保持全靠该触点,接触不良便于工作不能自保持,接触器线圈失电跳闸,合闸便失败。
发现此种情况,应再按一次按钮,此时注意合闸时接触器辅助触点动作情况,再检查一下触头上无杂物污染。
若有,应用砂纸将杂物、污染物擦去,再试合一下即可。
c自控联锁触点工作不正常:
有一些电动机是有联锁控制的,如锅炉房鼓风机与引风机(在引风机未起动工作时,鼓风机不能起动);多个皮带机组成的流水线或输送系统(上一个皮带机未工作,下一个皮带机不能起动);水泵高液位自动停车等。
图4-1控制回路中,在跳闸按钮SSTP与FT之间串联相关的自控联锁触点,在单机试车时,应将自控联锁触点临时短接。
在联动试车时,应解除临时短接线。
自控联锁触点工作状态不良,那么合闸便有困难(这种事故有时是因触点抖动而瞬动跳闸,有时是合闸不上)。
2一次母线电压过低要保证接触器K可靠吸合,其线圈电压不得低于额定电压的85%。
如果电动机比较大,供电线路离电源又较远,在起动时由于起动电流较大,线路压降就要大一些,很可能低于额定电压85%,接触器无法吸合,这从电压表上可以观察到。
对策是在接触器所处的母线上设置补偿电容。
因为电动机起动时70%是无功电流,设置电容补偿以减少流过供电线路的电流。
补偿的电容量可按电动机额定容量的80%考虑。
如仍不够,可增加电容量直至电动机能起动时为止。
当然也可通过相关的计算来确定。
降压起动失败跳闸
降压起动失败跳闸有两种情况。
两种情况成因是不同的。
(1)在未切至全电压时即跳闸这种情况往往是电动机端电压不足造成的,此时从监测到电压情况便可判断。
造成端电压过低的原因是:
一方面可能是变电所至配电室供电线路过长,另一方面可能是降压电抗(或电阻)值偏大,致使电动机端电压过低,起动转矩不足以克服负荷转矩,电动机如堵转一般,电流始终不衰减,热保护到时动作跳闸,起动失败。
如果是供电线路过长可设法用电容补偿方法,提高配电室母线电压。
当然电容器应是可调节的,以免电动机停机时母线电压过高。
如果是电抗过大,则设法减小电抗值,使得母线电压与电动机端电压均有妥当的数值,各方面工作都正常。
(2)降压过程是成功的,在投切至全电压运行时跳闸在电动机从降压阶段至全电压工作的切换过程中,有一供电间隙(如Y—△起动),此时因电动机内有乘磁,它的电磁场的情况与停机是不同的,有自己的极性方向,类似发电机。
当合至电网时由于相位不一致,有时会造成大的冲击,其电流甚至会超过全电压起动的情况,出现意料不到的断路器过流动作,或接触器失压跳闸。
这种状况往往是有时起动能成功,有时起动要失败,有很大的偶然性。
成功的原因是两个相位接近或完全相同,相位差就很小,二次起运冲击电流很小,起动便能成功。
这种情况,100kw以上的电动机发生的较多,因为其乘磁能量大。
遇到这种情况应使用电抗器降压,用短接电抗来达到全电压起动目的。
其过程中间没有供电间隙,就不会产生上述情况。
短延时跳闸
电动机起动过程中,跳闸时间不足1s的为短延时跳闸。
其异常现象不多见,上述熔断器不良是其中之一。
另外,带有接地保护的断路器,其漏电动作整定值偏小,因电动机的馈赠电线路在敷设中绝缘受伤,漏电流值偏大,有时会导致接地保护动作。
为防止误动作,接地保护通常有~的短延时,此时,便反映为短延时动作跳闸。
这种情况在新线路上不易发生,在旧的线路上此类故障比较多,一般而言,通过绝缘检查是能发现此故障的。
此外,短延时跳闸原因是上一级保护误动作。
如图4—2所示,QF1的整定值是正确的,而QF整定值比QF1大,但有Mn等电动机负荷的存在,当M1起动时,有6IN起动电流存在,QF保护越级动作,此往往表现为短延时,同时Mn等电动机也从运行中跳闸,表象很清楚,很容易识别。
对策是提高QF的整定值。
长延时跳闸
跳闸动作时间在5s以上的为长延时跳闸。
其原因多在电动机一端。
(1)电动机端电压不足在一些码头、水源地等场所,由于种种原因,无法设置变电所。
这些电动机离变电所配电室较远,电动机容量又较大,在起动时电动机控制中心的母线电压不是太低,接触器能可靠合闸。
但电动机端电压不足,不能拖动相关的机泵运转,相当于堵转状态,时间一长,热保护便动作跳闸。
长延时跳闸更容易发生在电动机容量大。
供电线路长,双采取了降压起动的场合。
有些制造商根据电动机容量较大的状况,出厂时配置了降压起动装置,使用者误以为降压起动设备有比无好,也就用上去了。
其结果是电动机端电压更低,问题更突出。
当电动机与其电动机控制中心相距较远,例如大于200m时,其线路本身也能限制起动电流值,那时就不一定需要降压起动了。
当然这是要经过计算下结论的。
电动机端电压要保证多少数值才能确保机泵的起动,理论上是可以通过计算求得的。
如在初次起动时,就有可能起动失败。
这时需要监测电动机端电压,当电动机端电压在60%及以下时,应采取措施。
优先的办法是在电动机端并联电容,如前面所述的那样。
但电容量不必太大,按电动机功率因数为依据,补偿至为宜,这也是供电设计规范中所推崇的就地补偿方式。
这样不但改善了电动机端电压水平,而且也补偿了功率因数。
如在选择电动机时不清楚起动电流倍数,就只能适当地放大一些导线截面,以减少线路的阻抗和电压降。
(2)电动机反转有一些机泵,正转与反转,起动转矩是不一样的。
例如大型冷却塔风机,反转时尽管能起动成功,但负荷电流始终超过额定电流,热保护自然要动作。
发生此情况,可检查一下转向是否正确,发生电流偏大,转向有误,只要将电动机馈线相位变一下,使电动机正向转动即可。
(3)机泵安装有误有一些风机,其叶轮角度是可调的。
叶轮角度不同时,风机提供的风量是不同的,所需电动机功率也是不同的。
原来需要的风量不大,而风机安装时叶轮角度调节成了大风量时的角度,与所提供的电动机不协调,便造成长时期过载而导致热保护动作,起动失败。
另外,还有一些属于电动机及其机泵联结上不妥的场合,也会造成上述情况,上述情况可请制造商来处理解决。
(4)热保护选用不正确有一些风机,如大直径类型的,起动惯量大,必须的时间达10s或更长。
普通的热继电器如是10A级的可确保在、10s内不动作,超过10s便难以保证了。
如果发生此种情况,可改用20级(动作时间20s)或30级(动作时间30s)。
电动机常见故障及排除方法
异步电动机的故障可分为机械故障和电气故障两类。
机械故障如轴承、铁心、风叶、机座、转轴等故障,一般比较容易观察与发现;电气故障主要是定子绕组、电刷等导电部分出现的故障。
由于电动机的结构型式、制造质量、使用和维护情况的不同,往往可能出现同一故障有不同外观现象,或同一外观现象引起不同的故障。
因此要正确判断故障,必须先进行认真细致的观察、研究和分析。
然后进行检查与测量,找出故障所在,并采取相应的措施予以排除。
1、?
调查
首先了解电机的型号、规格、使用条件及使用年限,以及电机在发生故障前的运行情况,如所带负荷的大小、温升的高低、有无不正常的声音、操作情况等等,并认真听取操作人员的反映。
2、?
察看故障现象
察看的方法要按电机故障情况灵活掌握,有时可以把电动机上电源进行短时运转,直接观察故障情况,再进行分析研究。
有时电机不能上电源,通过仪表测量或观察来进行分析判断,然后再把电机拆开,测量并仔细观察其内部情况,找出其故障所在。
异步电动机的常见故障、产生故障的可能原因及排除方法
故障现象
造成故障的可能原因
处理方法
电源接通后电动机不能起动
(1)电源断电或电源开关接触不良;
(2)熔丝烧断,控制设备接线或二次回路接线错误;
(3)定子绕组接线错误;
(4)定子绕组断路、短路或接地,绕线电机转子绕组断路;
(5)负载过重或传动机械有故障或传动机构被卡住;
(6)绕线电动机转子回路断开(电刷与滑环接触不良,变阻器断路,引线接触不良等);
(7)电源电压过低
(1)检查电源,开关接触不良应进行修理或更换;
(2)更换保险丝,检查控制设备接线或二次回路接线;
(3)检查接线,纠正错误;
(4)找出故障点,排除故障;
(5)检查传动机构及负载;
(6)找出断路点,并加以修复;
(7)检查原因并排除
电动机温升过高或冒烟
(1)负载过重或启动过于频繁;
(2)三相异步电动机断相运行;
(3)定子绕组接线错误;
(4)定子绕组接地或匝间、相间短路;
(5)鼠笼电动机转子断条;
(6)绕线电动机转子绕组断相运行;
(7)定子、转子相擦;
(8)通风不良;
(9)电源电压过高或过低
(1)减轻负载,减少启动次数;
(2)检查原因,排除故障;
(3)检查定子绕组接线,加以纠正;
(4)查出接地或短路部位,加以修复;
(5)铸铝转子必须更换,铜条子可修复或更换;
(6)找出故障点,加以修复;
(7)检查轴承,看转子是否变形,进行修理或更换;
(8)检查通风道是否畅通,对不可反转的电动机检查其转向;
(9)检查原因并排除
电机振动
(1)风扇叶片损坏和转子不平衡;
(2)带轮不平衡或轴伸弯曲;
(3)电机与负载轴线不对;
(4)电机安装不良,基础不牢、钢度不够或固定不紧
(5)负载突然过重
(1)校正平衡;
(2)检查并校正;
(3)检查、调整机组的轴线;
(4)检查安装情况及底脚螺栓;
(5)减轻负载
运行时有异声
(1)定子转子相擦;
(2)轴承损坏或润滑不良;
(3)电动机两相运行;
(4)风叶碰机壳
(5)绕组接地或相间短路;
(6)绕组匝间短路
(1)检查轴承。
看转子是否变形,进行修复或更换;
(2)更换轴承,清洁轴承;
(3)查出故障点并加以修复;
(4)检查并消除故障;
(5)(6)检查并修理;
电动机带负载时转速过低
(1)电源电压过低;
(2)负载过大;
(3)鼠笼电动机转子断条;
(4)绕线电动机转子绕组接触不良或断开;
(5)支路压降过大,电动机出线端电压过低。
(6)接线错误,如将定子绕组的△接线误接成Y形
(1)检查电源电压;
(2)核对负载;
(3)铸铝转子必须更换,铜条子可修复或更换;
(4)检查电刷压力,电刷与环接触情况及转子绕组
(5)更换截面较大的导线,尽量减小电动机与电源的距离;
(6)更换接线方法
电动机外壳带电
(1)电源线与接地线搞错,接地线的毛刺与外壳相碰,接地线线头脱落,接地线失效和接零的零线中断(接不良或接地电阻太大);
(2)绕组受潮,绝缘损坏或老化;
(3)相线触及外壳,有脏物,引出线或接线盒的接头的绝缘损伤而接地。
(1)按规定接好地线,消除接地不良处;
(2)对受潮的绕组进行烘干处理,绝缘损坏或老化的绕组应予以更换;
(3)先查接线盒桩头,再查保护钢笔管管口和接头的绝缘情况,若以损坏,应套上绝缘管和包扎绝缘布,必要时进行浸漆处理。
清除脏物。
重接引出线
电动机的绝缘电阻过低
(1)长期搁置不用或浸水,造成绝缘受潮;
(2)长期运行绕组积尘太多,尤其是绕组上沉积导电性粉尘,使绝缘电阻大幅度降低;
(3)引出线和接线盒的绝缘损坏;
(4)绕组过热而造成绝缘老化
(1)可用烘烤的办法恢复绝缘性能;
(2)拆开电动机进行彻底清扫;
(3)重新包扎损坏部位;
(4)重新浸漆或重绕绕组
电动机运行中的监视与维护
电动机在运行时,要通过听、看、闻等及时监视电动机,以期当电动机出现不正常现象时能及时切断电源,排除故障。
具体项目如下:
(1)听电动机在运行时发出的声音是否正常。
电动机正常运行时,发出的声音应该是平稳、轻快、均匀、有节奏的。
如果出现尖叫、沉闷、摩擦、撞击、振动等异声时,应立即停机检查。
观察电动机有无振动、噪声和异常气味电动机若出现振动,会引起与之相连的负载部分不同心度增高,形成电动机负载增大,出现超负荷运行,就会烧毁电动机。
因此,电动机在运行中,尤其是大功率电动机更要经常检查地脚螺栓、电动机端盖、轴承压盖等是否松动,接地装置是否可靠,发现问题及时解决。
噪场声和异味是电动机运转异常、随即出现严重故障的前兆,必须随时发现开查明原因而排除。
(2)通过多种渠道经常检查。
检查电动机的温度及电动机的轴承、定子、外壳等部位的温度有无异常变化,尤其对无电压、电流指示及没有过载保护的电动机,对温升的监视更为重要。
电动机轴承是否过热,缺油,若发现轴承附近的温升过高,就应立即停机检查。
轴承的滚动体、滚道表面有无裂纹、划伤或损缺,轴承间隙是否过大晃动,内环在轴上有无转动等。
出现上述任何一种现象,都必须更新轴承后方可再行作业。
注意电动机在运行中是否发出焦臭味,如有,说明电动机温度过高,应立即停机检查原因。
(3)保持电动机的清洁,特别是接线端和绕组表面的清洁。
不允许水滴、油污及杂物落到电动机上,更不能让杂物和水滴进入电动机内部。
要定期检修电动机,清洁内部,更换润滑油等。
电动机在运行中,进风口周围至少3米内不允许有尘土、水渍和其他杂物,以防止吸人电机内部,形成短路介质,或损坏导线绝缘层,造成匣间短路,电流增大,温度升高而烧毁电动机。
所以,要保证电动机有足够的绝缘电阻,以及良好的通风冷却环境,才能使电动机在长时间运行中保持安全稳定的工作状态。
(4)要定期测量电动机的绝缘电阻,特别是电动机受潮时,如发现绝缘电阻过低,要及时进行干燥处理。
(5)对绕线式电动机,要经常注意电刷与滑环间的火花是否过大,如火花过大。
要及时做好清洁工作,并进行检修。
(6)保持电动机在额定电流下工作电动机过载运行,主要原因是由于拖动的负荷过大,电压过低,或被带动的机械卡滞等造成的。
若过载时间过长,电动机将从电网中吸收大量的有功功率,电流便急剧增大,温度也随之上升,在高温下电动机的绝缘便老化失效而烧毁。
因此,电动机在运行中,要注意检查传动装置运转是否灵活、可靠;连轴器的同心度是否标准;齿轮传动的灵活性等,若发现有滞卡现象,应立即停机查明原因排除故障后再运行。
(7)检查电动机三相电流是否平衡,其三相电流任何一相电流与其他两相电流平均值之差不允许超过10%,这样才能保证电动机安全运行。
如果超过则表明电动机有故障,必须查明原因及时排除。
(8)启动设备正常工作和电动机启动设备技术状态的好坏,对电动机的正常启动起着决定性的作用。
实践证明,绝大多数烧毁的电动机,其原因大都是启动设备工作不正常造成的。
如启动设备出现缺相启动,接触器触头拉弧、打火等。
而启动设备的维护主要是清洁、紧固。
如接触器触点不清洁会使接触电阻增大,引起发热烧毁触点,造成缺相而烧毁电动机;接触器吸合线圈的铁芯锈蚀和尘积,会使线圈吸合不严,并发生强烈噪声,增大线圈电流,烧毁线圈而引发故障。
因此,电气控制柜应设在干燥、通风和便于操作的位置,并定期除尘。
经常检查接触器触点、线圈铁芯、各接线螺丝等是否可靠,机械部位动作是否灵活,使其保持良好的技术状态。
?