伍德里奇计量经济学英文版各章总结K12教育文档.docx

上传人:b****2 文档编号:24609350 上传时间:2023-05-29 格式:DOCX 页数:22 大小:44.64KB
下载 相关 举报
伍德里奇计量经济学英文版各章总结K12教育文档.docx_第1页
第1页 / 共22页
伍德里奇计量经济学英文版各章总结K12教育文档.docx_第2页
第2页 / 共22页
伍德里奇计量经济学英文版各章总结K12教育文档.docx_第3页
第3页 / 共22页
伍德里奇计量经济学英文版各章总结K12教育文档.docx_第4页
第4页 / 共22页
伍德里奇计量经济学英文版各章总结K12教育文档.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

伍德里奇计量经济学英文版各章总结K12教育文档.docx

《伍德里奇计量经济学英文版各章总结K12教育文档.docx》由会员分享,可在线阅读,更多相关《伍德里奇计量经济学英文版各章总结K12教育文档.docx(22页珍藏版)》请在冰豆网上搜索。

伍德里奇计量经济学英文版各章总结K12教育文档.docx

伍德里奇计量经济学英文版各章总结K12教育文档

伍德里奇计量经济学英文版各章总结(word版可编辑修改)

编辑整理:

 

尊敬的读者朋友们:

这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(伍德里奇计量经济学英文版各章总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为伍德里奇计量经济学英文版各章总结(word版可编辑修改)的全部内容。

CHAPTER1

TEACHINGNOTES

YouhavesubstantiallatitudeaboutwhattoemphasizeinChapter1。

Ifinditusefultotalkabouttheeconomicsofcrimeexample(Example1.1)andthewageexample(Example1.2)sothatstudentssee,attheoutset,thateconometricsislinkedtoeconomicreasoning,eveniftheeconomicsisnotcomplicatedtheory.

Iliketofamiliarizestudentswiththeimportantdatastructuresthatempiricaleconomistsuse,focusingprimarilyoncross—sectionalandtimeseriesdatasets,asthesearewhatIcoverinafirst—semestercourse.Itisprobablyagoodideatomentionthegrowingimportanceofdatasetsthathavebothacross—sectionalandtimedimension。

Ispendalmostanentirelecturetalkingabouttheproblemsinherentindrawingcausalinferencesinthesocialsciences.Idothismostlythroughtheagriculturalyield,returntoeducation,andcrimeexamples.Theseexamplesalsocontrastexperimentalandnonexperimental(observational)data。

Studentsstudyingbusinessandfinancetendtofindthetermstructureofinterestratesexamplemorerelevant,althoughtheissuethereistestingtheimplicationofasimpletheory,asopposedtoinferringcausality。

Ihavefoundthatspendingtimetalkingabouttheseexamples,inplaceofaformalreviewofprobabilityandstatistics,ismoresuccessful(andmoreenjoyableforthestudentsandme)。

CHAPTER2

TEACHINGNOTES

ThisisthechapterwhereIexpectstudentstofollowmost,ifnotall,ofthealgebraicderivations。

InclassIliketoderiveatleasttheunbiasednessoftheOLSslopecoefficient,andusuallyIderivethevariance。

Ataminimum,Italkaboutthefactorsaffectingthevariance.Tosimplifythenotation,afterIemphasizetheassumptionsinthepopulationmodel,andassumerandomsampling,Ijustconditiononthevaluesoftheexplanatoryvariablesinthesample.Technically,thisisjustifiedbyrandomsamplingbecause,forexample,E(ui|x1,x2,…,xn)=E(ui|xi)byindependentsampling。

IfindthatstudentsareabletofocusonthekeyassumptionSLR.4andsubsequentlytakemywordabouthowconditioningontheindependentvariablesinthesampleisharmless.(Ifyouprefer,theappendixtoChapter3doestheconditioningargumentcarefully。

)Becausestatisticalinferenceisnomoredifficultinmultipleregressionthaninsimpleregression,IpostponeinferenceuntilChapter4.(Thisreducesredundancyandallowsyoutofocusontheinterpretivedifferencesbetweensimpleandmultipleregression。

Youmightnoticehow,comparedwithmostothertexts,IuserelativelyfewassumptionstoderivetheunbiasednessoftheOLSslopeestimator,followedbytheformulaforitsvariance。

ThisisbecauseIdonotintroduceredundantorunnecessaryassumptions.Forexample,onceSLR.4isassumed,nothingfurtherabouttherelationshipbetweenuandxisneededtoobtaintheunbiasednessofOLSunderrandomsampling.

CHAPTER3

TEACHINGNOTES

Forundergraduates,Idonotworkthroughmostofthederivationsinthischapter,atleastnotindetail。

Rather,Ifocusoninterpretingtheassumptions,whichmostlyconcernthepopulation.Otherthanrandomsampling,theonlyassumptionthatinvolvesmorethanpopulationconsiderationsistheassumptionaboutnoperfectcollinearity,wherethepossibilityofperfectcollinearityinthesample(evenifitdoesnotoccurinthepopulation)shouldbetouchedon.Themoreimportantissueisperfectcollinearityinthepopulation,butthisisfairlyeasytodispensewithviaexamples。

Thesecomefrommyexperienceswiththekindsofmodelspecificationissuesthatbeginnershavetroublewith。

Thecomparisonofsimpleandmultipleregressionestimates–basedontheparticularsampleathand,asopposedtotheirstatisticalproperties –usuallymakesastrongimpression.SometimesIdonotbotherwiththe“partiallingout”interpretationofmultipleregression。

Asfarasstatisticalproperties,noticehowItreattheproblemofincludinganirrelevantvariable:

noseparatederivationisneeded,astheresultfollowsformTheorem3.1。

Idoliketoderivetheomittedvariablebiasinthesimplecase.ThisisnotmuchmoredifficultthanshowingunbiasednessofOLSinthesimpleregressioncaseunderthefirstfourGauss-Markovassumptions。

Itisimportanttogetthestudentsthinkingaboutthisproblemearlyon,andbeforetoomanyadditional(unnecessary)assumptionshavebeenintroduced.

Ihaveintentionallykeptthediscussionofmulticollinearitytoaminimum.Thispartlyindicatesmybias,butitalsoreflectsreality。

Itis,ofcourse,veryimportantforstudentstounderstandthepotentialconsequencesofhavinghighlycorrelatedindependentvariables。

Butthisisoftenbeyondourcontrol,exceptthatwecanasklessofourmultipleregressionanalysis。

Iftwoormoreexplanatoryvariablesarehighlycorrelatedinthesample,weshouldnotexpecttopreciselyestimatetheirceterisparibuseffectsinthepopulation.

Ifindextensivetreatmentsofmulticollinearity,whereone“tests"orsomehow“solves"themulticollinearityproblem,tobemisleading,atbest。

EventheorganizationofsometextsgivestheimpressionthatimperfectmulticollinearityissomehowaviolationoftheGauss—Markovassumptions:

theyincludemulticollinearityinachapterorpartofthebookdevotedto“violationofthebasicassumptions,”orsomethinglikethat。

Ihavenoticedthatmaster'sstudentswhohavehadsomeundergraduateeconometricsareoftenconfusedonthemulticollinearityissue.Itisveryimportantthatstudentsnotconfusemulticollinearityamongtheincludedexplanatoryvariablesinaregressionmodelwiththebiascausedbyomittinganimportantvariable.

IdonotprovetheGauss—Markovtheorem.Instead,Iemphasizeitsimplications。

Sometimes,andcertainlyforadvancedbeginners,IputaspecialcaseofProblem3。

12onamidtermexam,whereImakeaparticularchoiceforthefunctiong(x).Ratherthanhavethestudentsdirectlycomparethevariances,theyshouldappealtotheGauss-MarkovtheoremforthesuperiorityofOLSoveranyotherlinear,unbiasedestimator。

CHAPTER4

TEACHINGNOTES

AtthestartofthischapterisgoodtimetoremindstudentsthataspecificerrordistributionplayednoroleintheresultsofChapter3.ThatisbecauseonlythefirsttwomomentswerederivedunderthefullsetofGauss-Markovassumptions。

Nevertheless,normalityisneededtoobtainexactnormalsamplingdistributions(conditionalontheexplanatoryvariables).IemphasizethatthefullsetofCLMassumptionsareusedinthischapter,butthatinChapter5werelaxthenormalityassumptionandstillperformapproximatelyvalidinference.Onecouldarguethattheclassicallinearmodelresultscouldbeskippedentirely,andthatonlylarge—sampleanalysisisneeded。

But,fromapracticalperspective,studentsstillneedtoknowwherethetdistributioncomesfrombecausevirtuallyallregressionpackagesreporttstatisticsandobtainp—valuesoffofthetdistribution。

IthenfinditveryeasytocoverChapter5quickly,byjustsayingwecandropnormalityandstillusetstatisticsandtheassociatedp—valuesasbeingapproximatelyvalid。

Besides,occasionallystudentswillhavetoanalyzesmallerdatasets,especiallyiftheydotheirownsmallsurveysforatermproject.

Itiscrucialtoemphasizethatwetesthypothesesaboutunknownpopulationparameters。

ItellmystudentsthattheywillbepunishediftheywritesomethinglikeH0:

 =0onanexamor,evenworse,H0:

632=0。

OneusefulfeatureofChapter4isitsillustrationofhowtorewriteapopulationmodelsothatitcontainstheparameterofinterestintestingasinglerestriction。

Ifindthisiseasier,boththeoreticallyandpractically,thancomputingvariancesthatcan,insomecases,dependonnumerouscovarianceterms.Theexampleoftestingequalityofthereturntotwo-andfour—yearcollegesillustratesthebasicmethod,andshowsthattherespecifiedmodelcanhaveausefulinterpretation.Ofcourse,somestatisticalpackagesnowprovideastandarderrorforlinearcombinationsofestimateswithasimplecommand,andthatshouldbetaught,too.

OnecanuseanFtestforsinglelinearrestrictionsonmultipleparameters,butthisislesstransparentthanattestanddoesnotimmediatelyproducethestandarderrorneededforaconfidenceintervalorfortestingaone-sidedalternative。

Thetrickofrewritingthepopulationmodelisusefulinseveralinstances,includingobtainingconfidenceintervalsforpredictionsinChapter6,aswellasforobtainingconfidenceintervalsformarginaleffectsinmodelswithinteractions(alsoinChapter6)。

Themajorleaguebaseballplayersalaryexampleillustratesthedifferencebetweenindividualandjointsignificancewhenexplanatoryvariables(rbisyrandhrunsyrinthiscase)arehighlycorrelated。

ItendtoemphasizetheR-squaredformoftheFstatisticbecause,inpractice,itisapplicablealargepercentageofthetime,anditismuchmorereadilycomputed。

Idoregretthatthisexampleisbiasedtowardstudentsincountrieswherebaseballisplayed.Still,itisoneofthebetterexamplesofmulticollinearitythatIhavecomeacross,andstudentsofallbackgroundsseemtogetthepoint。

CHAPTER5

TEACHINGNOTES

Chapter5isshort,butitisconceptuallymoredifficultthantheearlierchapters,primarilybecauseitrequiressomeknowledgeofasymptoticpropertiesofestimators.Inclass,Igiveabrief,heuristicdescriptionofconsistencyandasym

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1