六年级下册数学同步练习433用比例解决问题人教新课标版语文.docx
《六年级下册数学同步练习433用比例解决问题人教新课标版语文.docx》由会员分享,可在线阅读,更多相关《六年级下册数学同步练习433用比例解决问题人教新课标版语文.docx(11页珍藏版)》请在冰豆网上搜索。
六年级下册数学同步练习433用比例解决问题人教新课标版语文
六年级下册第四章4.3.3用比例解决问题课时练习
一、选择题(共15小题)
1.在比例尺是1:
6000000的地图上,量得南京到北京的距离是15厘米,南京到北京的实际距离大约是( )千米.
A.800千米B.90千米C.900千米
答案:
C
解答:
解:
设南京到北京的实际距离大约是x厘米.
15:
x=1:
6000000
x=15×6000000
x=90000000;
90000000厘米=900千米;
分析:
因为图上距离:
实际距离=比例尺,可以用解比例的方法求出实际距离.然后选出正确的即可。
故选:
C
2.将3克盐溶解在100克水中,盐与盐水的比是( )
A.3:
97B.3:
100C.3:
103
答案:
C
解答:
解:
盐水的质量为3+100=103克,
所以盐与盐水的比为3:
103;
分析:
根据题干可得:
盐水的质量为3+100=103克,由此可解决问题。
故选:
C
3.小正方形和大正方形边长的比是2:
7,小正方形和大正方形面积的比是( )
A.2:
7B.6:
21C.4:
49D.7:
2
答案:
C
解答:
解:
因为,小正方形和大正方形边长的比是2:
7,
所以面积的比是:
(2×2):
(7×7)=4:
49,
分析;因为正方形的面积是边长乘边长,所以由边长的比,即可求出面积的比。
故选C
4.一个长4cm,宽2cm的长方形按4:
1放大,得到的图形的面积是( )cm2.
A.32B.72C.128
答案:
C
解答:
解:
放大后的长:
4×4=16(厘米);
放大后的宽:
2×4=8(厘米);
面积:
16×8=128(平方厘米);
分析:
先根据按4:
1放大,放大后长和宽是原来的4倍,求出放大后的长和宽,再求出面积。
故答案选:
C
5.圆的周长扩大4倍,面积( )
A.扩大4倍B.扩大8倍C.扩大16倍
答案:
C
解答:
解:
因为圆的周长扩大4倍,半径就扩大4倍;
半径扩大4倍,面积扩大:
42=16倍;
分析:
根据圆的周长公式C=2πr,知道r=C÷2π,所以圆的周长扩大4倍,半径就扩大4倍;再根据圆的面积公式S=πr2,知道半径扩大4倍,面积扩大42倍,由此做出选择。
故选:
C
6.两根同样的钢筋,其中一根锯成3段用了12分钟,另一根要锯成6段,需要( )分钟.
A.24B.12C.30
答案:
C
解答:
解:
12÷(3﹣1)×(6﹣1),
=12÷2×5,
=6×5,
=30(分钟);
答:
需要30分钟。
分析:
根据“锯成3段用了12分钟,”知道锯成3﹣1次用了12分钟,由此求出锯一次所用的时间;再根据另一根钢筋要锯成6段,知道要锯6﹣1次,所以用锯一次的时间乘锯的次数就是需要的时间。
故选:
C
7.a,b,c三个数均大于零,当a×1=b×=c×时,则a,b,c中最大的是( )
A.aB.bC.c
答案:
B
解答:
解:
设a×1=b×=c×=T,则
a=T,b=12T,C=T
因为,12T>T>T,
所以b>a>c
分析:
因为此题有3个未知量,根据现有的条件,不能直接求出,可让这个等式等于一个数(用字母表示),用这个数(字母)分别表示出三个未知量即可。
故选B
8.一根木头锯成3段要6分钟,那么锯成9段需要( )分钟.
A.16B.18C.24D.27
答案:
C
解答:
解:
3﹣1=2(次);
9﹣1=8(次);
6÷2×8;
=3×8;
=24(分钟).
答;那么锯成9段需要24分钟。
分析:
先求出锯一次要几分钟,然后求出锯9段需几次,即可解答。
故选:
C
9.有一根粗细均匀刻有刻度的竹竿,在左边的刻度3的塑料袋里放入4个棋子,在右边的刻度2的塑料袋里应放入( )个棋子才能保证竹竿的平衡.
A.4B.5C.6
答案:
C
解答:
解:
设右边应放x个棋子,竹竿才能保持平衡,
则2x=3×4,
2x=12,
x=6;
答:
在右边的刻度2的塑料袋里应放入6个棋子才能保证竹竿的平衡。
分析:
根据题干,由杠杆平衡原理可得:
在竹竿平衡的情况下,每个袋子中的棋子数与对应刻度的乘积是一定的,即每个袋子中的棋子数与对应刻度成反比例,据此即可列比例求解。
故选:
C
10.一个等腰三角形的底边与一条腰的长度之比是3:
2,周长是35厘米.那么,这个三角形底边是( )厘米.
A.21B.15C.10D.13
答案:
B
解答:
解:
35×,
=35×,
=15(厘米);
答:
这个等腰三角形底边长是15厘米。
分析:
围成三角形的所有线段的长度和,就是这个三角形的周长,又因这个等腰三角形的三条边的比为3:
2:
2,从而利用按比例分配的方法,即可求出底边的长度。
故选:
B
11.一个直角三角形,两直角边长度之和是14分米,它们的比是3:
4,这个直角三角形的斜边是10分米,那么斜边上的高为( )分米.
A.7B.8C.10D.4.8
答案:
D
解答:
解:
一条直角边为:
14÷(3+4)×3,
=14÷7×3,
=6(分米),
另一条直角边为:
14﹣6=8(分米),
设斜边上的高为x分米,
6×8÷2=10×x÷2,
10x=48,
x=48÷10,
x=4.8,
答:
斜边上的高为4.8分米,
分析:
先利用按比例分配的方法,求出两条直角边的长度;再根据直角三角形的面积是一定的,即两条直角边的乘积的一半等于斜边与斜边的高的乘积的一半,设出未知数列出比例解答即可。
故选:
D
12.图上距离10厘米的地图上,比例尺是1:
1000,表示实际距离( )米.
A.1000B.100C.10000D.100000
答案:
B
解答:
解:
1000×10=10000(厘米),
10000厘米=100米;
分析:
根据比例尺是1:
100,知道图上是1厘米的距离,它的实际距离是1000厘米,由此即可求出要求的答案。
故选:
B
13.一个礼堂长18米,宽10米,用边长4分米的方砖铺地,需要( )块方砖.
A.1100B.1125C.45D.180
答案:
B
解答:
解:
18×10=180(平方米),
180平方米=18000平方分米,
4×4=16(平方分米),
18000÷16=1125(块);
答:
需要1125块。
分析:
根据长方形和正方形的面积公式,可以分别求出礼堂地面的面积与方砖的面积,由此即可求出答案。
故选:
B
14.已知:
a×=b×1=c÷,且a、b、c都不等于0,则a、b、c中最小的数是( )
A.aB.bC.c
答案:
C
解答:
解:
因为a×=b×1=c÷,
所以a×=b×1=c×,
又因为>1>,
所以C<b<a,c最小。
分析:
一个字母与数相乘的积与另外一个字母与数相乘的积相等,则乘以较大数的字母较小,据此规律推出即可。
故选:
C
15.x、y、z是三个非零自然数,且x×=y×=z×,那么x、y、z按照从大到小的顺序排列应是( )
A.x>y>zB.z>y>xC.y>x>zD.y>z>x
答案:
B
解答:
解:
由x×=y×,利用比例的基本性质可得:
x:
y=:
=(×35):
(×35)=40:
42=20:
21,
所以x<y,
由y×=z×,利用比例的基本性质可得:
y:
z=:
=(×63):
(×63)=70:
72=35:
36,
所以y<z,
所以x<y<z。
分析:
此题可以分开讨论:
①由x×=y×,利用比例的基本性质可得:
x:
y=:
=(×35):
(×35)=40:
42=20:
21,由此可以得出x<y;②同样的方法讨论出y与z的大小。
故选:
B
二、填空题(共5小题)
16.王飞以每小时40千米的速度行了240千米,按原路返回时每小时行60千米,王飞往返的平均速度是每小时行 千米.
答案:
48
解答:
解:
240÷60=4(小时);
240×2÷(240÷40+4);
=480÷(6+4);
=480÷10;
=48(千米);
答:
王飞往返的平均速度是每小时行48千米。
分析:
根据路程,速度,时间的关系可以求出返回的时间,再根据求平均数的方法,即可求出平均速度。
17.在比例尺是1:
2019000的地图上,量得两地距离是38厘米,这两地的实际距离是 千米.
答案:
760
解答:
解:
设这两地的实际距离是x厘米,
1:
2019000=38:
x,
x=76000000;
76000000厘米=760千米;
答:
这两地的实际距离是760千米。
故答案为:
760。
分析:
根据题意知道,比例尺一定,图上距离和实际距离成正比例,由此列式解答即可。
18.如果在比例尺是1:
5000的图纸上,画一个边长为4厘米的正方形草坪图,这个草坪图的实际面积是 平方米.
答案:
40000
解答:
解:
设正方形的实际边长是x厘米,
1:
5000=4:
x
x=5000×4
x=20190;
20190厘米=200米;
面积是:
200×200=40000(平方米)
答:
这个草坪图的实际面积是40000平方米。
故答案为:
40000。
分析:
要求实际面积是多少,先要求出正方形的边长;根据比例尺是1:
5000,即图上距离与实际距离的比是1:
5000,即可求出正方形草坪的实际边长,再根据正方形的面积公式,即可计算出答案。
19.把一根木料锯成4段要用12分钟,照这样,如果要锯成6段,一共需要 分钟.
答案:
20
解答:
解:
设一共需要x分钟,
则有12:
(4﹣1)=x:
(6﹣1),
3x=12×5,
3x=60,
x=20;
答:
一共需要20分钟。
故答案为:
20。
分析:
由题意可知:
一根圆木锯成4段,需要锯(4﹣1)次,锯成6段需要锯(6﹣1)次,锯每次需要的时间一定,则时间与锯的次数成正比,据此即可列比例求解。
20.甲乙两数的比是5:
3,乙数是60,甲数是 .
答案:
100
则x:
60=5:
3,
3x=300,
x=100.
故答案为:
100。
分析:
此题主要考查比例的基本性质。
三、解答题(共6小题)
21.一辆货车从甲地去相距315km的乙地送货.已知前3小时行了135km,如果用同样的速度行完剩下的路程,还要行几小时?
(用比例解)
答案:
还要行4小时
解答:
解:
还要行x小时,
135:
3=(315﹣135):
x,
135:
3=180:
x,
135x=180×3,
x=,
x=4;
答:
还要行4小时。
分析:
根据速度一定,路程与时间成正比例,由此列出方程解决问题。
22.王刚从家去学校,每分走60米,15分可以走到学校.如果每分走75米,几分可以走到学校?
(用比例解)
答案:
12分可以走到学校
解答:
解:
设x分可以走到学校,
75x=60×15,
x=,
x=12,
答:
12分可以走到学校。
分析:
根据题意知道王刚家到学校的路程一定,王刚行走的速度与时间成反比例,由此列出比例解答即可。
23.用边长4分米的方砖铺一块地,需要250块,如果改用边长5分米的方砖,要用多少块?
(比例解)
答案:
要用160块
解答:
解:
设要用x块,
5×5×x=4×4×250,
25x=16×250,
x=,
x=160,
答:
要用160块。
分析:
根据题意知道,铺地的面积一定,方砖的块数与方砖的面积成反比例,由此列出比例解答即可。
24.50千克