三角形内角和.docx

上传人:b****2 文档编号:24404318 上传时间:2023-05-27 格式:DOCX 页数:8 大小:18.38KB
下载 相关 举报
三角形内角和.docx_第1页
第1页 / 共8页
三角形内角和.docx_第2页
第2页 / 共8页
三角形内角和.docx_第3页
第3页 / 共8页
三角形内角和.docx_第4页
第4页 / 共8页
三角形内角和.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

三角形内角和.docx

《三角形内角和.docx》由会员分享,可在线阅读,更多相关《三角形内角和.docx(8页珍藏版)》请在冰豆网上搜索。

三角形内角和.docx

三角形内角和

三角形的内角和

丁明艳

一、教学内容:

四年级下册数学第67页

二、课题确定的背景及意义

三角形的内角和是三角形的一个重要特征。

本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。

学生在掌握知识方面:

已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:

经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

教材很重视知识的探索与发现,安排了一系列的实验操作活动。

教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,适合学生课下进行研究。

概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

三、课题的布置和指导

第一天,面向全体学生,让学生自主探索:

三角形的三个内角的和是多少度?

你是怎么验证的?

第二天,收集学生的研究成果,根据学生的研究成果,分为三个小组:

一组是用测量的方法;二组是利用平角的知识;三组是用四边形的内角和。

还有两个同学研究出了五边形和六边形的内角和,把他俩编为拓展小组,最后单独汇报。

四、课堂实录

(一)复习三角形有关知识

这几天,我们和哪个图形交上了朋友?

学生回答:

三角形

谁能说说关于三角形你了解了哪些知识?

学生回答。

一个简单的三角形,竟然隐藏着这么多的知识,这一节课我们继续来研究三角形。

今天要研究的问题是:

三角形的三个内角的和是多少度?

你是怎样来验证的?

课前让大家做了研究。

下面,我们将分组来汇报你们的研究成果。

在这节课中,我们将评出:

最佳质疑奖,最佳表现奖,最佳创新奖,最佳合作奖,希望大家好好表现,看看谁是我们这节课上的智慧小明星,大家有信心吗?

(二)汇报

下面有请一组的同学来汇报他们的研究成果。

大家好:

我们组通过观察一副三角板,发现这两个三角板的内角和分别是:

45°+90°+45°=180°,60°+30°+90°=180°。

然后,我们就大胆猜想,是不是所有的三角形的三个内角的和都是180°呢?

能不能量一量不同类型的三角形,来算一算三角形的内角和呢?

然后我们小组每个同学都画了三个不同类型的三角形:

锐角三角形、直角三角形、钝角三角形。

(一生汇报)通过测量我发现:

我画的这个锐角三角形的各个角的度数分别是:

34°、78°、68°,内角和是180°;直角三角形的各个角的度数分别是:

90°、37°、53°,内角和是180°;钝角三角形的各个角的度数分别是:

所以我认为:

三角形的内角和就是180°。

我们组有四个同学和我的结论一样。

(另一生汇报)但是,我也画了三个不同类型的三角形,测量了各个三角形的内角的度数,分别是。

我汇报完毕。

大家对我们小组的汇报有什么要说的吗?

生1:

通过一组同学的汇报,我发现三角形的内角和在180°左右。

生2:

为什么有的是180°,有的不是呢?

生3:

可能在测量的过程中量的不准确。

生4:

也可能三角形画的不准确。

生5:

为什么用钝角三角形、直角三角形、锐角三角形来研究,而不用等腰三角形、等边三角形来研究呢?

一组:

因为我们要研究的是三角形的角,而不是三角形的边。

等腰三角形、等边三角形也包含在钝角三角形、直角三角形、锐角三角形里。

师:

看来,用测量的方法来求三角形的内角和对画图、量角的精确度的要求非常高。

容易产生误差,有局限性,其他组有没有更好的方法呢?

让我们来听听二组同学的汇报吧。

二组:

大家好:

我们组是用了撕和拼的方法来研究三角形的内角和的。

一生(边说边演示):

我把三角形的两个角撕下来,和第三个角拼在一起,这三个角组成了一个平角,平角是180°,所以,我得出三角形的内角和是180°。

另一生(边说边演示):

我也是用拼的方法,但没有撕,而是通过折叠。

把上面的角沿虚线横折,顶点落在底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角也组成了一个平角。

汇报完毕。

大家对我们的研究有什么要问的吗?

生1:

我觉得,撕和拼有缝隙,三个角不一定正好组成一个平角。

生2:

你怎么知道这三个角正好组成一个平角呢?

二组同学:

可以用量角器量一量;用直尺比划一下,看看下面两条边是否在同一条直线上。

生3:

对于大小不同的三角形,它们的内角和会一样大吗?

二组同学:

三角形变大了,但角的大小没有变,因为角的大小与边的长短无关。

生4:

我觉得二组同学的方法一看就明白,很直观。

师:

刚才二组同学用了平角的知识得出三角形的内角和是180°。

同学们认真的听取了他们的汇报,并对他们的研究进行了质疑。

觉得用这种方法比较直观,但在撕和拼的过程中,由于操作的精细程度不同,可能会有误差,那到底有没有更能让大家信服的方法呢?

三组的同学已经跃跃欲试了,下面有请三组的同学为我们汇报他们的研究成果。

三组:

大家好,我们在研究三角形的内角和时,联想到,我们上学期学过的四边形的内角和是360°.我们就试着用四边形来研究三角形的内角和。

生1:

我是用长方形来研究的,我把长方形沿着一条对角线剪开,就得到了两个完全一样的直角三角形,这两个直角三角形六个角的度数和正好是长方形的内角和,是360°。

所以,一个直角三角形的内角和就是360°÷2=180°。

生2:

我是用正方形来研究的,方法和他的一样,也得出三角形的内角和是180°。

大家对我们的汇报有什么疑问吗?

生:

你们得出的都是直角三角形的内角和是180°,那锐角三角形呢?

钝角三角形呢?

生3:

也可以,我是用平行四边形来研究的,沿着这条对角线剪开,就得到两个完全一样的锐角三角形,所以,每个锐角三角形的内角和就是360°÷2=180°;沿着另一条对角线剪开,就可以得到两个完全一样的钝角三角形,同样,每个钝角三角形的内角和也是

360°÷2=180°。

大家听明白了吗?

师:

大家的掌声说明了一切。

他们用四边形的内角和研究出了三角形的内角和,将新知识转化成了旧知识,非常准确的说明了三角形的内角和就是180°,非常棒。

其他同学有什么要问三组同学的吗?

生:

我觉得三组的同学非常棒,他们的方法让我们非常信服。

生4:

我来考考大家,将两个完全一样的直角三角形拼成一个大三角形,这个大三角形的内角和是不是360°呢?

生:

还是180°,因为这两个直角三角形的两个直角已经不是大三角形的内角了,大三角形的内角和应该是:

用这两个三角形的内角和360°减去两个直角的和,还是180°。

师:

大家现在对三角形的内角和是180°还有疑问吗?

生齐答:

没有。

(三)练习

师:

那我们就用刚才的研究成果来解决实际问题吧。

出示:

一个三角形的风筝,一个底角是70°,顶角是多少度呢?

生板演。

(四)拓展小组的汇报

师:

在研究三角形的内角和的过程中,还有两个同学还研究出了五边形,六边形的内角和,下面有请这两个同学汇报。

生1:

我发现,从五边形的一个顶点出发,可以画两条对角线,将这个五边形分成了三个三角形,这三个三角形的内角和就是五边形的内角和,就是:

180°×3=540°.同样,可以得出六边形的内角和就是

180°×4=720°.

生2:

我发现,每多一条边,内角和就增加180°。

师:

大家认为他们是不是非常善于动脑,发现问题呀?

生:

我很佩服他们,我就没想出他们的方法。

(五)总结

师:

刚才大家表现的都非常出色,谁来说一说这节课你有什么收获吗?

生谈自己的收获。

(六)评价颁奖

师:

那大家认为,本节课中,谁更有资格获得这些奖项呢?

生评价,颁奖。

五、教学反思:

关于三角形的内角和,学生并不陌生,但怎么来验证是问题的所在,让学生在课下研究,让每位同学都参与了研究,第二天收集学生的研究成果时,出现了学生为了拼凑180°,不是实事求是的测量每个角的度数的情况,我对用测量来验证三角形的内角和的同学,要求他们重新画图,实事求是的测量。

因为没学中位线,有部分学生在拼凑的过程中出现了困难,花费的时间较长,这部分同学,我引导他们找窍门,从而能较准确的拼凑成平角。

这样,学生进行测量、计算,但得不到统一的结果,再让用把三个角拼在一起得到一个平角的同学进行验证。

这时,由于拼凑也容易出现误差,所以这种方法也不是令人信服,于是,引出了用四边形的内角和来验证的比较严密的方法。

在教学过程中,我说的有点多,对学生还是放手不够,在练习的过程中,应该在引导学生进一步巩固三角形的内角和是180°这一结论。

 

三角形的内角和(一组研究报告)

研究人:

孙元鸿潘雪梅

研究题目:

三角形的三个内角的和是多少度?

你是怎么验证的?

研究准备:

一副三角板钝角三角形锐角三角形直角三角形量角器

研究方法:

画图测量计算

研究过程:

1、分别计算一副三角板的内角和是180°。

由此猜想:

所有三角形的内角和都是180°。

2、为了进一步验证三角形的内角和是不是180°,我们分别画了三种不同的三角形:

钝角三角形、锐角三角形、直角三角形,然后用量角器分别量出了各个三角形的各角的度数,分别计算出它们的内角和。

(孙元鸿)通过测量我发现:

我画的这个锐角三角形的各个角的度数分别是:

34°、78°、68°,内角和是180°;直角三角形的各个角的度数分别是:

90°、37°、53°,内角和是180°;钝角三角形的各个角的度数分别是:

115°、34°、31°,内角和是180°。

所以我认为三角板的内角和是180°。

(潘雪梅)我也分别画了三种不同的三角形:

钝角三角形、锐角三角形、直角三角形,通过测量我发现:

我画的这个锐角三角形的各个角的度数分别是:

54°、73°、55°,内角和是182°;直角三角形的各个角的度数分别是:

90°、42°、48°,内角和是180°;钝角三角形的各个角的度数分别是:

108°、33°、40°,内角和是181°。

所以我认为三角板的内角和是180°左右。

我们小组认为:

三角形的内角和在180°左右。

三角形的内角和(二组研究报告)

研究人:

张冰冰王家兴

研究题目:

三角形的三个内角的和是多少度?

你是怎么验证的?

研究准备:

钝角三角形、锐角三角形、直角三角形纸片

研究方法:

用撕和拼的方法研究三角形的内角和

研究过程:

(张冰冰)我把三角形的两个角撕下来,和第三个角拼在一起,看到拼成的这个大角的两边在一条直线上,这三个角组成了一个平角,平角是180°,三种三角形都能分别组成一个平角。

所以,我得出三角形的内角和是180°。

(王家兴)我也是用拼的方法,但没有撕,而是通过折叠。

把上面的角沿虚线横折,顶点落在底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角也组成了一个平角。

同样,其他两种三角形也能组成平角。

所以,我得出三角形的内角和是180°。

所以我们认为:

三角形的内角和是180°。

 

三角形的内角和(三组研究报告)

研究人:

孙梓硕李虹霓任明慧

研究题目:

三角形的三个内角的和是多少度?

你是怎么验证的?

研究准备:

长方形、正方形、平行四边形纸片

研究方法:

用四边形的内角和来研究三角形的内角和

研究过程:

(孙梓硕)我们在研究三角形的内角和时,联想到,我们上学期学过的四边形的内角和是360°。

我们就试着用四边形来研究三角形的内角和。

我是用长方形来研究的,我把长方形沿着一条对角线剪开,就得到了两个完全一样的直角三角形,这两个直角三角形六个角的度数和正好是长方形的内角和,是360°。

所以,一个直角三角形的内角和就是360°÷2=180°。

(李虹霓):

我是用正方形来研究的,方法和他的一样,也得出三角形的内角和是180°。

(任明慧)我是用平行四边形来研究的,沿着这条对角线剪开,就得到两个完全一样的锐角三角形,所以,每个锐角三角形的内角和就是360°÷2=180°;沿着另一条对角线剪开,就可以得到两个完全一样的钝角三角形,同样,每个钝角三角形的内角和也是360°÷2=180°。

所以我们认为:

三角形的内角和就是180°。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中教育 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1