IGBT单相半桥无源逆变电路设计要点.docx

上传人:b****2 文档编号:2435149 上传时间:2022-10-29 格式:DOCX 页数:10 大小:209.17KB
下载 相关 举报
IGBT单相半桥无源逆变电路设计要点.docx_第1页
第1页 / 共10页
IGBT单相半桥无源逆变电路设计要点.docx_第2页
第2页 / 共10页
IGBT单相半桥无源逆变电路设计要点.docx_第3页
第3页 / 共10页
IGBT单相半桥无源逆变电路设计要点.docx_第4页
第4页 / 共10页
IGBT单相半桥无源逆变电路设计要点.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

IGBT单相半桥无源逆变电路设计要点.docx

《IGBT单相半桥无源逆变电路设计要点.docx》由会员分享,可在线阅读,更多相关《IGBT单相半桥无源逆变电路设计要点.docx(10页珍藏版)》请在冰豆网上搜索。

IGBT单相半桥无源逆变电路设计要点.docx

IGBT单相半桥无源逆变电路设计要点

《单片机技术》课程设计说明书模板

IGBT单相半桥无源逆变电路设计

院、部:

电子与信息工程学院

学生姓名:

指导教师:

职称:

博士

专业:

自动化

班级:

完成时间:

2013年5月20日

摘要

本次课程设计的题目是IGBT单相半桥无源逆变电路设计,同时设计相应的触发电路。

根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

本次设计中主要由交流电源,整流,滤波和半桥逆变电路四部分构成电路的主电路,驱动电路和驱动电源构成指挥主电路中逆变桥正确工作的控制电路。

设计中使用到的绝缘栅双极晶体管(Insulated-gateBipolarTransistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

本文对使用的IGBT单相半桥无源逆变电路进行了波形的仿真和分析。

关键词:

IGBT;单相半桥;无源逆变

 

ABSTRACT

ThecoursedesignisthesubjectofIGBTsingle-phasehalf-bridgepassiveinvertercircuitdesign,whilethedesignoftriggercircuitcorresponding.Accordingtotherelatedknowledgeofpowerelectronicstechnology,single-phasebridgeinvertercircuitisacircuitcommon,comparedwiththerectifiercircuit,theDCtoACinvertercircuitbecome.WhentheACsideisconnectedtothepowergrid,calledactiveinverter;whentheACsidedirectlyandloadconnected,calledpassiveinverter,theinvertercircuitiswidelyappliedinreallife.

ThisdesignismainlycomposedofACpower,rectifier,filterandhalf-bridgeinvertercircuitfourpartsofthemaincircuitcircuit,drivingcircuitandpowersupplycontrolcircuitinthemaincircuitofinverterbridgecommandworkproperly.Insulatedgatebipolartransistortouseindesign(Insulated-gateBipolarTransistor),theEnglishabbreviationforIGBT.Itisatypicalcontroldevice.ItcombinestheadvantagesofGTRandMOSFET,whichhasagoodcharacteristic.Hasnowbecometheleadingdevice,highpowerelectronicequipment.ThispaperanalyzedandsimulatedwaveformsofIGBTsingle-phasehalf-bridgeinvertercircuitusingpassive.

Keywords:

IGBT;single-phasehalf-bridge;passiveinverter

 

第1章系统方案设计及原理

1.1系统方案

系统方案如图1所示,在电路原理框图中,交流电源、整流、滤波和半桥逆变电路四个部分构成电路的主电路,驱动电源和驱动电路两部分构成指挥主电路中逆变桥正确工作的控制电路。

其中,交流电源、整流、滤波三个部分的功能分别由交流变压器、全桥整流模块和两个串联的电解电容实现;半桥逆变电路由半桥逆变和缓冲电路构成;而驱动电源和驱动电路则需要根据实际电路的要求进行搭建。

 

图1电路原理图

1.2系统工作原理

1.2.1逆变电路的基本工作原理

以图2的单相桥式逆变电路说明逆变电路最基本的工作原理。

图2中S1~S4是桥式电路的4个臂,它们由电力电子器件及其辅助电路组成。

当开关S1、S4闭合,S2、S3断开时,负载电压U0为正;当开关S1、S4断开,S2、S3闭合时,U0为负。

这样,就把直流电变成了交流电,改变两组开关的切换频率,即可改变输出交流电的频率。

图2逆变电路原理图

1.2.2单相半桥阻感负载逆变电路

图3电压型半桥逆变电路及其电压电流波形

在一个周期内,电力晶体管T1和T2的基极信号各有半周正偏,半周反偏,且互补。

若负载为阻感负载,t2时刻以前,T1有驱动信号导通,T2截止,U0=Ud/2。

t2时刻关断的T1,同时给T2发出导通信号。

由于感性负载中的电流i。

不能立即改变方向,于是D2导通续流,U0=-Ud/2。

T3时刻i。

降至零,D2截止,T2导通,i。

开始反向增大,此时仍然有U0=-Ud/2。

在t4时刻关断T2,同时给T1发出导通信号,由于感性负载中的电流i。

不能立即改变方向,D1先导通续流,此时仍然有U0=Ud/2;

t5时刻i。

降至零,T1导通,U0=Ud/2。

1.2.3单相半桥纯电阻负载逆变电路

如图4所示在一个周期内,电力晶体管V1和V2的基极信号各有半周正偏,半周反偏且互补。

由于是纯电阻负载,当V1开通时V2关断,则负载两端的电压为:

Uo=Ud/2;当V1关断时V2开通,则负载两端的电压为:

U0=-Ud/2。

图4单相半桥纯电阻负载逆变电路及IGBT脉冲波形

1.3IGBT的结构特点和工作原理

1.3.1IGBT的结构特点

IGBT是双极型晶体管(BJT)和MOSFET的复合器件,IGBT将BJT的电导调制效应引入到VDMOS的高祖漂流区,大大改善了器件的导通特性,同时它还具有MOSFET的栅极高输入阻抗的特点。

IGBT所能应用的范围基本上替代了传统的功率晶体管。

图5IGBT结构图

如图5所示为一个N沟道增强型绝缘栅双极晶体管结构,N+区称为源区,附于其上的电极称为源极。

P+区称为漏区。

器件的控制区为栅区,附于其上的电极称为栅极。

沟道在紧靠栅区边界形成。

在漏、源之间的P型区(包括P+和P一区)(沟道在该区域形成),称为亚沟道区(Subchannelregion)。

而在漏区另一侧的P+区称为漏注入区(Draininjector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。

附于漏注入区上的电极称为漏极。

IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。

反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。

IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。

当MOSFET的沟道形成后,从P+基极注入到N一层的空穴,对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。

IGBT的开通和关断是由门极电压控制的,当门极加正向电压时,门极下方的P区中形成电子载流子到点沟道,电子载流子由发射极的N+区通过导电沟道注入N-区,即为IGBT内部的PNP型晶体管提供基极电流,从而使IGBT导通。

此时,为维持N-区的电平衡,P+区像N-区注入空穴载流子,并保持N-区具有较高的载流子浓度,即对N-区进行电导调制,减小导通电阻,使得IGBT也具有较低的通态压降。

若门极上加负电压时,MOSFET内的沟道消失,PNP型晶体管的基极电流被切断,IGBT就关断。

图6常用IGBT的电气符号图7IGBT的等效电路

图6为IGBT的常用电气符号,IGBT的等效电路如图7所示,由图可知,若在IGBT的栅极G和发射极E之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极C与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOS截止,切断PNP晶体管基极电流的供给,使得晶体管截止。

IGBT与MOSFET一样也是电压控制型器件,在它的栅极G—发射极E间施加十几V的直流电压,只有在uA级的漏电流流过,基本上不消耗功率。

如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。

1.3.2IGBT对驱动电路的要求

IGBT的驱动条件与它的静态和动态特性密切相关。

栅极的正偏压+VGE、负偏压-VGE和栅极电阻RG的大小,对IGBT的通态电压、开关时间、开关损耗、承受短路能力以及dVCE/dt等参数都有不同程度的影响。

门极驱动条件与器件特性的关系如表1所示:

表1门极驱动条件与器件特性的关系

特性

Vce(on)

Ton、Eon

toff、Eoff

负载短路能力

电流dVce/dt

+VCE增大

降低

降低

------

降低

增加

-VCE减小

------

------

略减小

------

减小

RC增大

------

增加

增加

------

减小

由于IGBT的开关特性和安全工作区随着栅极驱动电路的变化而变化,因而驱动电路性能的好坏将直接影响IGBT能否正常工作。

为使IGBT能可靠工作。

IGBT对其驱动电路提出了以下要求。

 

1)向IGBT提供适当的正向栅压。

并且在IGBT导通后。

栅极驱动电路提供给IGBT的驱动电压和电流要有足够的幅度,使IGBT的功率输出级总处于饱和状态。

瞬时过载时,栅极驱动电路提供的驱动功率要足以保证IGBT不退出饱和区。

IGBT导通后的管压降与所加栅源电压有关,在漏源电流一定的情况下,VGE越高,VDS傩就越低,器件的导通损耗就越小,这有利于充分发挥管子的工作能力。

但是,VGE并非越高越好,一般不允许超过20V,原因是一旦发生过流或短路,栅压越高,则电流幅值越高,IGBT损坏的可能性就越大。

通常,综合考虑取+15V为宜。

2)能向IGBT提供足够的反向栅压。

在IGBT关断期间,由于电路中其他部分的工作,会在栅极电路中产生一些高频振荡信号,这些信号轻则会使本该截止的IGBT处于微通状态,增加管子的功耗。

重则将使调压电路处于短路直通状态。

因此,最好给处于截止状态的IGBT加一反向栅压f幅值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1