MatLab对语音信号进行频谱分析及滤波.docx
《MatLab对语音信号进行频谱分析及滤波.docx》由会员分享,可在线阅读,更多相关《MatLab对语音信号进行频谱分析及滤波.docx(14页珍藏版)》请在冰豆网上搜索。
MatLab对语音信号进行频谱分析及滤波
数字信号处理综合实验报告
综合实验名称:
应用Matlab对语音信号进行
频谱分析及滤波
系:
学生姓名:
班级:
通信
学号:
11
成绩:
指导教师:
开课时间:
2011-2012学年上学期
一.综合实验题目
应用MatLab对语音信号进行频谱分析及滤波
二.主要内容
录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;
课程设计应完成的工作:
1、语音信号的采集;
2、语音信号的频谱分析;
3、数字滤波器的设计;
4、对语音信号进行滤波处理;
5、对滤波前后的语音信号频谱进行对比分析;
三.具体要求
1、学生能够根据设计内容积极主动查找相关资料;
2、滤波器的性能指标可以根据实际情况作调整;
3、对设计结果进行独立思考和分析;
4、设计完成后,要提交相关的文档;
1)课程设计报告书(纸质和电子版各一份,具体格式参照学校课程设计管理规定),报告内容要涵盖设计题目、设计任务、详细的设计过程、原理说明、、频谱图的分析、调试总结、心得体会、参考文献(在报告中参考文献要做标注,不少于5篇)。
2)可运行的源程序代码(电子版)
在基本要求的基础上,学生可以根据个人对该课程设计的理解,添加一些新的内容;
四.进度安排
序号
内容
时间(天)
1
熟悉Matlab程序设计方法,了解数字信号处理工具箱使用
2
2
分析题目,设计程序框图,编写程序代码
3
3
上机调试程序,修改并完善设计
2
4
验收设计成果及上交设计报告(电子稿和打印稿)
1
5
合计
8
五.成绩评定
(1)平时成绩:
无故旷课一次,平时成绩减半;无故旷课两次平时成绩为0分,无故旷课三次总成绩为0分。
迟到15分钟按旷课处理
(2)设计成绩:
按照实际的设计过程及最终的实现结果给出相应的成绩。
(3)设计报告成绩:
按照提交报告的质量给出相应的成绩。
课程设计成绩=平时成绩(30%)+设计成绩(30%)+设计报告成绩(40%)
应用MatLab对语音信号进行频谱分析及滤波
第一章实验任务
录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号。
第二章实验原理
2.1采样频率、位数及采样定理
采样频率[2],也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。
采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。
通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。
采样频率越高,即采样的间隔时间越短,则在单位时间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。
采样位数可以理解为声卡处理声音的解析度。
这个数值越大,解析度就越高,录制和回放的声音就越真实。
我们首先要知道:
电脑中的声音文件是用数字0和1来表示的。
所以在电脑上录音的本质就是把模拟声音信号转换成数字信号。
反之,在播放时则是把数字信号还原成模拟声音信号输出。
采样定理又称奈奎斯特定理[2],在进行模拟/数字信号的转换过程中,当采样频率fs不小于信号中最高频率fm的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍。
2.2时域信号的FFT分析
信号的频谱分析就是计算机信号的傅里叶变换[5]。
连续信号与系统的傅里叶分析显然不便于用计算机进行计算,使其应用受到限制。
而FFT是一种时域和频域均离散化的变换,适合数值运算,成为用计算机分析离散信号和系统的有力工具。
对连续信号和系统,可以通过时域采样,应用DFT进行近似谱分析。
2.3IIR数字滤波器设计原理
利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计)[6],首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。
如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws的转换,对ap和as指标不作变化。
边界频率的转换关系为∩=2/Ttan(w/2)。
接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/∩c代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。
之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR滤波器的系统函数H(z)。
第三章实验过程
一、原始语音信号采样后的时域、频域分析
1、源程序如下:
[x1,fs,bits]=wavread('C:
\DocumentsandSettings\Administrator\桌面\gyw.wav');
%读取语音信号的数据,赋给变量x1
figure
(1)
plot(x1)%做原始语音信号以44.1k采样后的时域图形
title('原始语音采样后时域信号');
xlabel('时间轴n');
ylabel('幅值A');
figure
(2)
freqz(x1)%绘制原始语音信号采样后的频率响应图
title('原始语音信号采样后频率响应图');
[x1,fs,bits]=wavread('录音.wav');%读取语音信号的数据,赋给变量x1
sound(x1,fs);%播放语音信号
2、运行结果如图3-1、3-2所示:
图3-1原始语音采样后时域信号
图3-2原始语音信号采样后频率响应
二、采样后信号的FFT变换分析
1、源程序如下:
[x1,fs,bits]=wavread('C:
\DocumentsandSettings\Administrator\桌面\gyw.wav');%读取语音信号的数据,赋给变量x1
y1=fft(x1,1024);%对采样后信号做1024点FFT变换
f=fs*(0:
511)/1024;%生成频率序列
figure
(1)
subplot(2,1,1);
plot(f,abs(y1(1:
512)));
title('原始语音信号频谱')
xlabel('频率/Hz');
ylabel('幅值')
subplot(2,1,2);
plot(abs(y1(1:
1024)))%采样后信号的FFT频谱图
title('原始语音信号FFT频谱')
xlabel('点数N');
ylabel('幅值');
2、运行结果如图3-3所示:
图3-3原始语音信号频谱及FFT频谱
3、频谱分析:
从图3-3可以看出,采样点数为1024,离散点数越多,越接近原始信号频谱。
三、脉冲响应不变法设计IIR数字滤波器
1)低通滤波器性能指标fp=1000Hz,fst=1200Hz,Ap=1db,As=100db。
(1)源程序如下:
fs=22050;
[x2]=wavread('C:
\DocumentsandSettings\Administrator\桌面\gyw.wav');
Ts=1/fs;R1=10;
wp=2*pi*1000/fs;%通带截止频率
ws=2*pi*1200/fs;%阻带截止频率
Rp=1;%通带衰减
Rl=100;%阻带衰减
不要这两句【wp1=2/Ts*tan(wp/2);%将模拟指标转换成数字指标
ws1=2/Ts*tan(ws/2);】
[N,Wn]=buttord(wp,ws,Rp,R1,'s');%计算相应的滤波器的阶数N和3dB截止频率
[B,A]=butter(N,Wn,’s’);%计算相应模拟滤波器的系统函数
[bz,az]=impinvar(B,A);%用脉冲响应法实现模拟滤波器到数字滤波器的转换
[H,W]=freqz(bz,az);%绘制频率响应曲线
figure
(1)
plot(W*fs/(2*pi),abs(H))
grid
xlabel('频率/Hz')
ylabel('频率响应幅度')
title('IIR低通滤波器')
f1=filter(bz,az,x2);%滤波后的序列为f1
figure
(2)
subplot(2,1,1)
plot(x2)%画出滤波前的时域图
title('IIR低通滤波器滤波前的时域波形');
subplot(2,1,2)
plot(f1);%画出滤波后的时域图
title('IIR低通滤波器滤波后的时域波形');
sound(f1,44100);%播放滤波后的信号
F0=fft(f1,1024);
f=fs*(0:
511)/1024;
figure(3)
y2=fft(x2,1024);
subplot(2,1,1);
plot(f,abs(y2(1:
512)));%画出滤波前的频谱图
title('IIR低通滤波器滤波前的频谱')
xlabel('频率/Hz');
ylabel('幅值');
subplot(2,1,2)
F1=plot(f,abs(F0(1:
512)));%画出滤波后的频谱图
title('IIR低通滤波器滤波后的频谱')
xlabel('频率/Hz');
ylabel('幅值');
(2)运行结果如图3-4、3-5和3-6所示:
图3-4IIR低通滤波器
图3-5IIR低通滤波器滤波前后时域波形
图3-6IIR低通滤波器滤波前后的频谱
(3)频谱分析:
从图3-6可以看出,经过IIR低通滤波器滤波后将高频部分滤除了。
四、窗函数法设计FIR数字滤波器
1)低通滤波器性能指标fp=1000Hz,fst=1200Hz,Ap=1db,As=100db。
(1)源程序如下:
fs=10000;
x1=wavread('C:
\DocumentsandSettings\Administrator\桌面\gyw.wav');
wp=2*pi*1000/fs;
ws=2*pi*1200/fs;
Rp=1;
Rs=100;
wdelta=ws-wp;
N=ceil(8*pi/wdelta);%取整
wn=(wp+ws)/2;
[b,a]=fir1(N,wn/pi,hamming(N+1));%选择窗函数,并归一化截止频率
figure
(1)
freqz(b,a,512);
title('FIR低通滤波器');
f2=filter(b,a,x1);
figure
(2)
subplot(2,1,1)
plot(x1)
title('FIR低通滤波器滤波前的时域波形');
subplot(2,1,2)
plot(f2);
title('FIR低通滤波器滤波后的时域波形');
sound(f2,44100);%播放滤波后的语音信号
F0=fft(f2,1024);
f=fs*(0:
511)/1024;
figure(3)
y2=fft(x1,1024);
subplot(2,1,1);
plot(f,abs(y2(1:
512)));
title('FIR低通滤波器滤波前的频谱')
xlabel('频率/Hz');
ylabel('幅值');
subplot(2,1,2)
F2=plot(f,abs(F0(1:
512)));
title('FIR低通滤波器滤波后的频谱')
xlabel('频率/Hz');
ylabel('幅值');
(2)运行结果如图3-7、3-8和3-9所示:
图3-7FIR低通滤波器
图3-8FIR低通滤波器滤波前后时域波形
图3-9FIR低通滤波器滤波前后频谱
(3)频谱分析:
从图3-9可以看出,经过FIR低通滤波器滤波后,将高频部分滤除了。
第四章心得体会
本次的数字信号处理综合实验的题目是应用Matlab对语音信号进行频谱分析及滤波,首先通过网络和书籍查找有关本次综合实验的资料,编写相关程序,并通过Matlab软件运行得到相关波形频谱图。
实验中利用双线性变换法设计IIR数字滤波器,利用窗函数设计FIR数字滤波器,可以是低通、高通和带通滤波器的设计,此次试验中选用的是低通滤波器,而低通滤波器是基于Butterworth滤波器来设计的,通过设计的滤波器对语音信号进行滤波,再对得出的频谱图进行分析。
在实验中遇到一些困难,在设计数字滤波器的时候,通带频率和阻带频率的选取要满足低通的要求,以及通带允许的最大衰减和阻带应达到的最小衰减。
在这次的综合实验中,总的来说并不是很辛苦,实验将上课所学的理论知识运用到实践中。
通过这次应用Matlab对语音信号进行频谱分析及滤波的综合实验,让我对Matlab的应用以及数字滤波器的设计有了更深层次的理解,每个程序中的语句表示什么意思也有了很清楚的了解。
在实践中增强了我的动手能力,以及增强了我的团队意识,并提高了我的综合能力,使自身得到了很大的锻炼。
最后要感谢老师的悉心指导和帮助,
参考文献
[1]胡广书.《数字信号处理》[M].北京:
清华大学出版社,2003
[2]程佩青.《数字信号处理教程》[M].北京:
清华大学出版社,2007.2
[3]余成波、陶红艳等.《数字信号处理及MATLAB实现(第二版)》[M].北京:
清华大学出版社,2007
[4]郭仕剑、王宝顺等.《MATLAB7.X数字信号处理》[M].北京:
人民邮电出版社,2006
[5]周辉.《数字信号处理基础及其MATLAB实现》[M].北京:
中国林业出版社,2006
[6]王彬.《MATLAB数字信号处理》[M].北京:
机械工业出版社,2010