高频变压器的设计.docx

上传人:b****1 文档编号:2419796 上传时间:2022-10-29 格式:DOCX 页数:15 大小:94.03KB
下载 相关 举报
高频变压器的设计.docx_第1页
第1页 / 共15页
高频变压器的设计.docx_第2页
第2页 / 共15页
高频变压器的设计.docx_第3页
第3页 / 共15页
高频变压器的设计.docx_第4页
第4页 / 共15页
高频变压器的设计.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

高频变压器的设计.docx

《高频变压器的设计.docx》由会员分享,可在线阅读,更多相关《高频变压器的设计.docx(15页珍藏版)》请在冰豆网上搜索。

高频变压器的设计.docx

高频变压器的设计

高频变压器制作

   脉冲变压器也可称作开关变压器,或简单地称作高频变压器。

在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。

随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。

因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。

随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。

开关变压器与普通变压器的区别大致有以下几点:

(1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。

(2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。

在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。

(3)绕组线路比较复杂,多半都有中心抽头。

这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。

图1开关电源原理图

本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V及12V的多路直流输出。

要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。

根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。

2变压器磁芯的选择与工作点的确定

2.1磁芯材料的选择

从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。

磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。

坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度Bs也不是很高,且加工工艺复杂。

考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度Bs较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的EI28来绕制本例中的脉冲变压器。

2.2工作点的确定

根据相关资料,EC35输出功率为50W,饱和磁感应强度大约在2000Gs左右。

买来的磁芯,由于厂家提供的磁感应强度月,值并不准确,可用图2所提供的方式粗略测试一下。

将调压器接至原线圈,用示波器观察副线圈输出电压波形。

将原线圈的输入电压由小到大慢慢升高,直到示波器显示的波形发生奇变。

此时,磁芯已饱和,根据公式:

U=4.44fN1Φm可推知在工频时的Φm值。

要求不高时,可根据测算出的Φm,粗略估算出原线圈的匝数,

图2工作点测试示意图

3变压器主要参数的计算

本例中的变换器采用单端反激式工作方式,单端反激变换器在小功率开关电源设计中应用非常广泛,且多路输出较方便。

单端反激电源的工作模式有两种:

电流连续模式和电流断续模式。

前者适用于较小功率,副边二极管存在没有反向恢复的问题,但MOS管的峰值电流相对较大;后者MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。

这两种工作模式可根据实际需求来选择,本文采用了后者。

设计变压器时大多需要考虑下面问题:

变换器频率f(H2);初级电压U1(V),次级电压U2(V);次级电流i2(A);绕组线路参数n1、,n2;温升τ(℃);绕组相对电压降u;环境温度τHJ(℃);绝缘材料密度γz(g/cm3)

1)根据变压器的输出功率选取铁芯,所选取的铁芯的户,值应等于或大于给定值。

2)绕组每伏匝数

(1)

ST是铁芯的截面积;kT是窗口的填充系数;

3)初级绕组电势

E1=U1(1-)

(2)

4)初级绕组匝数

W1=W0El(3)

5)次级绕组电势

E2i=U2i(1+)(4)

6)次级绕组匝数

W2i=W0E2i(5)

7)初级绕组电流

(6)

8)次级绕组电流    

(7)

其中,n1、n2:

分别是初级绕组和次级绕组的每层匝数。

9)初级绕组线径

(8)

10)次级绕组线径

(9)

其中,j是电流密度。

详细的变压器设计方法与计算相当复杂,本文参照经验公式,依据下面的步骤设计了本例转换器中的高频变压器。

3.1确定变压器的变比

根据输出电压U0的关系式

(10)

得变比为

(11)

式中UD为整流器输出的直流电压。

本例中UD=24V,f为100kHz,tON取0.5;n=2。

3.2计算初级线圈中的电流

已知输出直流电压U0=±12V、5V,负载电流均为I0=lA,则输出功率

P0=P1+P2+P3=29W

开关电源的效率η一般在60~90%之间,本例取η=0.65,则输入功率为

 

初级的平均电流为

 

假定初级线圈的初始电流为零,那么,在开关管的导通期tON里,初级线圈中的电流心便从零开始线性增长到峰值I1P

 

3.3计算初级绕组圈数N1

初级绕组的最小电感L1为

 

根据输出功率P的大小,选用适当的磁芯,其形状用环形、EI形或罐形均可,本例采用EI28,该类型的铁芯在f=50kHz时,功率可达到60W,在f=100kHz时,输出功率可达到90W。

 

式中Ilp—初级线圈峰值电流,A;

L1—初级电感,H;

S—磁芯截面积,mm2;

Bm—磁芯最大磁通密度,T。

3.4计算次级绕组圈数N2

 

即±12V分别绕5匝,5V绕3匝。

3.5反馈绕组N3的估算

反馈绕组匝数的确定,要求既能保证开关元件的饱和导通又不至于造成过大损耗。

根据UC3842的要求,反馈绕组的输出电压应在13V左右。

因此,

 

3.6导线线径的选取

根据输入输出的估算,初线线圈的平均电流值应该允许达到2A。

1)初级绕组

初级绕组的线径可选d=0.80mm,其截面积为0.5027mm2的圆铜线。

2)次级绕组

次级绕组的线径可根据各组输出电流的大小,利用原级相同线径采用多股并绕的办法解决。

为了方便线圈绕制,也可选用线径较粗的导线。

由于工作频率较高,应考虑集肤效应的影响。

3.7线圈绕制与绝缘

绕制开关变压器最重要的问题是想办法使初、次级线圈紧密地耦合在一起,这样可以减小变压器漏感,因为漏感过大,将会造成较大的尖峰脉冲,从而击穿开关管。

因此,在绕制高频变压器线圈时,应尽量使初、次级线圈之间的距离近些。

具体可采用以下方法:

(1)双线并绕法

将初、次级线圈的漆包线合起来并绕,即所谓双线并绕。

这样初、次级线间距离最小,可使漏感减小到最小值。

但这种绕法不好绕制,同时两线间的耐压值较低。

(2)逐层间绕法

为克服并绕法耐压低、绕制困难的缺点,用初、次级分层间绕法,即1、3、5行奇数层绕初级绕组,2、4、6等偶数层绕次级绕组。

这种绕法仍可保持初、次级间的耦合,又可在初、次级间垫绝缘纸,以提高绝缘程度。

(3)夹层式绕法

把次级绕组绕在初级绕组的中间,初级分两次绕。

这种绕法只在初级绕组中多一个接头,工艺简单,便于批量生产。

本例中,为减小分布参数的影响,初级采用双线并绕连接的结构,次级采用分段绕制,串联相接的方式,即所谓堆叠绕法。

降低绕组间的电压差,提高变压器的可靠性。

在变压器的绝缘方面,线圈绝缘应尽量选用抗电强度高、介质损耗低的复合纤维绝缘纸,提高初、次级之间的绝缘强度和抗电晕能力,本例中,因为不涉及高压,绝缘问题不必特殊考虑。

4结束语

绕制脉冲变压器是制作开关电源的重要工作,也是设计与制作过程中消耗大量时间和主要精力的工作。

变压器做得好,整个设计与制作工作就完成了70%以上。

做得不好,可能就会出现停振、啸叫或输出电压不稳、负载能力不高等现象。

在变压器的温升<35℃,绕制良好的脉冲变压器的工作效率可达到90%以上,且波形质量优异,电性能参数稳定。

在100kHz的使用条件下,脉冲变压器的体积可以大大减小。

绕制变压器时,要尽最大的努力保证以下几点:

(1)即使输入电压最大,主开关器件导通时间最长,也不至于使变压器的磁芯饱和;

(2)初级线圈与次级线圈的耦合要好,漏电感要小;

(3)高频开关变压器会因集肤效应导致电线的电阻值增大,因而要减小电流密度。

通常,工作时的最大磁通密度取决于次级线圈。

(12)

(4)一般来说,采用铁氧体磁芯E128时,要把Bm控制在3kGs以下。

 

高频平板变压器的原理与设计[注]

摘要:

运行在高频的常规变换变压器存在着漏电感大,匝间电容量大,趋肤效应、邻近效应严重,磁芯有局部过热点等问题。

一种新型变压器,高频平板变压器已开发出来,它能减小漏电感和匝间电容,能消除常规变压器存在的磁芯局部过热点,能使趋肤效应、邻近效应等问题得以改善,它具有很高的功率密度、很高的效率、很低的电磁干扰和简易价廉等优点。

关键词:

平板变压器原边电感漏感趋肤效应邻近效应

1引言

变压器一直是电源设备和装置,缩小体积、提高功率密度、实现模块化的一只拦路虎。

虽然高频变换技术引入电源后,可以甩掉体积庞大的工频变压器,但还需使用铁氧体磁芯的高频变压器。

铁氧体磁芯高频变压器的体积虽比工频变压器小,但离开模块化的要求还相差很远。

它不但体积还嫌大,而且它的发热量,漏电感都不小。

因此近几年来,许多专家、学者、工程师一直在研究解决这个问题的办法。

高频平板变压器的研制开发成功,就使变压器技术发生一个飞跃。

它不但能使变压器的体积缩小很多,而且还能使变压器内部的温升很低、漏电感很小,效率可做到99.6%,成本比一般同功率的变压器低一半。

它可用于单端正、反激,半桥,全桥和推挽变换器中作AC/DC和DC/DC变换器用。

它对低电压、大电流的变换器特别适用。

所以用它来做当代计算机电源特别合适。

2运行在高频情况下常规变换变压器存在的问题

(1)漏电感(简称漏感)

理想的变压器(完全耦合的变压器)原边绕组产生的磁通应全部穿过副边绕组,没有任何损失和泄漏。

但实际上常规的变换变压器不可能实现没有任何损失和泄漏。

原边绕组产生的磁通不可能全部穿过副边绕组。

非耦合部分磁通就在绕组或导体中有它自己的电感,存贮在这个“电感”中的能量不和主功率变压器电路相耦合。

这种电感我们称之为“漏感”。

理想变换器对绝缘的要求和为了要得到很低的电磁干扰(EMI)而需要很紧的电磁耦合以减小漏感的要求,是相互矛盾的。

当变压器不通电(转向脱离电源或开关处于关断期间)时,漏感存贮的能量要释放出来形成明显的噪音。

在示波器上能看到此噪音的高频尖峰脉冲波形。

高频尖峰脉冲波形的幅值Uspike和漏感Lleak与电流相对时间变化率的乘积成正比。

即:

|Uspike|=Lleakdi/dt

(1)

当工作频率升高,电流相对时间的变化率也就增加。

漏感的影响将更严重。

漏感的影响和变换器的开关速度成正比。

漏感产生过高的尖峰脉冲会损坏变换

图1常规变换变压器和平板变压器示意图

(a)常规变换变压器(b)平板变压器

器中的功率器件并形成明显的电磁干扰(EMI)。

为了降低漏感产生的尖峰脉冲幅值Uspike,而在变换器电路中必须加入缓冲网络。

但缓冲网络的加入,会增大变换器电路的损耗。

使变换器电路随工作频率提高,损耗增加,效率降低。

(2)绕组间电容

当变压器的绕组是多层绕组时,则顶层绕组和底层绕组之间就有电位差。

两个导体之间有电位差,就存在电容。

这个电容就称为“绕组间电容”。

当工作在高频时,这个电容会以惊人的速率进行充电和放电。

电容充电和放电过程中会产生损耗。

在给定的时间内,它充电和放电的次数愈多,损耗就愈大。

(3)趋肤效应(见前面黄健聪文章)

(4)邻近效应(见前面黄健聪文章)

(5)局部过热点

常规的变换变压器工作在高频时,其磁芯中部会有局部过热点。

因此,为了减小热效应,常规变换变压器的工作频率提高时,就必须相应地减小其磁通密

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1