电解液总结.docx

上传人:b****2 文档编号:24121218 上传时间:2023-05-24 格式:DOCX 页数:28 大小:1.58MB
下载 相关 举报
电解液总结.docx_第1页
第1页 / 共28页
电解液总结.docx_第2页
第2页 / 共28页
电解液总结.docx_第3页
第3页 / 共28页
电解液总结.docx_第4页
第4页 / 共28页
电解液总结.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

电解液总结.docx

《电解液总结.docx》由会员分享,可在线阅读,更多相关《电解液总结.docx(28页珍藏版)》请在冰豆网上搜索。

电解液总结.docx

电解液总结

电解液总结

1过充添加剂

要求

(1)在有机电解液中有良好的溶解性和足够快的扩散速度,能在大电流范围内提供过充保护

作用;

(2)在电池使用温度范围内具有良好的稳定性;(3)有合适的氧化电势,其值在电池的

充电截止电压和电解液的氧化电势之间;(4)氧化产物在还原过程中没有其他副反应;(5)

添加剂的加入对电池的综合电性能没有影响。

原理:

电聚合,电池内部添加某种聚合物单体分子(如联苯、环己苯、噻吩),聚合单体分子

的浓度足够大且电解液与单位面积极片的接触面积大,聚合物可以穿透隔膜即在正负极之间

形成导电桥,从而使电池因短路而电压下降,电聚合反应产物增大了电池的内阻,并产生氢气

导致电池在过充状态下内压和温升增加较快。

联苯对没有加防爆安全阀的电池起不到过充保

护作用,原因是电聚合反应不能足够迅速地使电池的内阻增大到在电池热量失控之前关闭电池。

加入联苯的同时,又加入了叔戊基苯,循环性能略有提高。

1mol/LLiPF6-EC/DEC(体积比1:

1)的电解液中加入质量分数6%的联苯的同时,又加入了质量分数2%的含氮化合物和少

量的萘-1,8-磺酸内酯,电池的膨胀得到抑制。

叔丁基苯与4-乙基苯的混合物对以镍酸锂为正极材料的电池有一定的过充保护能力,

且300次循环后,电池容量仍能保持在82.5%以上。

二氯苯甲醚和三氟甲氧基苯添加剂对方形063048电池有很好的过充保护能力。

环己苯的加入使电池的循环性能降低(200个循环后容量降低28%),膨胀程度增大;若再

加入质量分数2%的含氮化合物(如:

乙烯基吡啶与苯乙烯的共聚物(PVPS)、嘧啶、三乙胺、

聚乙烯吡咯烷酮、三嗪),电池的循环性能提高,膨胀程度减小。

环己苯在4•75V发生电聚合反应,生成导电聚合物膜,覆盖在正极与靠近正极的隔膜上使电池自放电至安全状态。

加入体积分数2%勺三乙胺,电池的膨胀得到抑制,过充能力明显

提高,可使电池耐2C-10V的过充,但电池的循环性能降低。

2,2-苯基丙烷是一种比较理想的过充保护添加剂,循环性能优于联苯,同时发现电池表

面的最大温度与电流的断开时间密切相关,而与添加剂的种类无关。

加入噻吩后,电池的自放

电非常严重,电压在1h内由4.2V迅速降低到4.09V;3-氯噻吩在4.8V发生电聚合反应,生成聚3-氯噻吩使电池自放电至安全状态,在电解液中加入质量分数2%的3-氯噻吩组成的

18650电池过充20min,电池不着火、不爆炸;3-溴噻吩对锂离子电池也有一定的过充保护作用,但3-溴噻吩的加入显著降低了电池的循环寿命,容量损失严重。

噻吩-3-甲腈、噻吩-2-

甲腈对锂离子电池也有一定的过充保护作用。

呋喃的加入明显地降低了电池的循环性能。

咯能使电池内部短路,但是由于电聚合反应发生在3.5V,电池不能充满电;N-甲基吡咯可以

把电池过充到4.1V,但是电压在24h内迅速降低到3.7V。

该类化合物既包含能够发生电聚合反应的芳基,又包含能够发生热聚合、紫外光聚合形成凝

胶的丙稀酸酯、环氧基、异腈酸盐。

与交联剂[聚乙二醇二丙烯酸酯(PEGDA或双甲基丙烯酸聚乙二醇酯(PEGDMA)联用可以增强共聚物的机械性能,提高电池的过充保护能力;与聚合催化剂(3-氯苯甲醚、过氧化氢)联用可以加快聚合反应速度,使电池在热量失控之前关闭。

聚吡啶化合物在有机溶剂中的溶解度不大,且在负极发生还原(能钝化负极的溶剂如

PCDME可以避免络合物的还原)。

在噻蒽的2,7位引入去电子官能团乙酰基可以把氧化电势提高到4.3V,还原电势提高到4.2V;测试结果同时表明2,7-二乙酰噻蒽添加剂对锂离子聚合物电池有很好的过充保护作用,并且其氧化还原电势可提高到4.4V。

茴香醚和联

(二)茴香醚在电池中的还原氧化过程为二电子反应,增加了添加剂传输电荷的能

力,通过改变甲基或甲氧基的数量可以把其氧化还原电势提高到4•3V。

同时发现该添加剂

对锂离子聚合物电池有很好的过充保护能力,并且添加剂的加入降低了负极的极化。

质量分

数3%~8喲三烷基芳基硅烷加入到锂离子电池电解液中,电池过充时不冒烟、不起火、不爆

炸,最高温度低于100C。

咪唑钠、二甲基溴代苯在1mol/LLiPF6-EC:

DMC(1:

1)电解液中

的氧化还原电势分别为4.29V、4.31V,两种添加剂对1

250mA-h的18650电池有很好的

过充保护能力,且添加剂的加入不影响电池的综合电性能。

1,电聚合添加剂与提高SEI膜稳定性的添加剂(如碳酸锂,苯甲醚等)联用,可以避免因添加剂用量增多造成电池容量、循环寿命下降带来的损失;2,电聚合添加剂与聚合反应催化剂(如3-氯苯甲醚、过氧化氢)联用,可以加快聚合反应的速度,使电池在热量失控之前关闭;3,电聚合添加剂与一些含氮化合物(如VC,三乙胺等)联用,会抑制电池的膨胀,提高过充效果;4,研制和开发一种既包含芳香族化合物官能团,又包含环氧基、丙烯酸酯的复杂高分子化合物。

电解液添加剂要求:

(1)用量虽少,但却能极大改善电池性能;

(2)不与电池材料发生副反应,与有机溶

剂有较好的相溶性;(3)价格相对较低;(4)无毒或毒性较小。

一般用量不超过体积分数的5%

分类:

(1)过充电保护添加剂;

(2)SEI膜优化剂;(3)阻燃添加剂;(4)提高电解液导电率的添加剂;(5)控制电解液中H20和HF含量的添加剂。

1.过充添加剂,电氧化聚合保护添加剂是指一类能在正极和电解液界面发生电氧化聚合反

应的芳香类和杂环化合物等。

A机理,添加剂在正极形成一层聚合物钝化膜,增加了电

池的内阻,最后使得充电电流中断,B机理,聚合反应生成的导电聚合物膜会穿透电池

正负极间的隔膜,使正负极通过该聚合物膜连接起来,从而疏导了过充的电流。

除联苯、

二甲苯、环己基苯之外,LiBOB对电池的过充保护也有一定的作用。

氧化还原电对:

研究过的此种添加剂有:

LiI-I2、金属茂合物、芳醚族化合物、噻蒽及其衍生物、一些

金属(Fe、RuIr、Ce)配位的邻二氮杂菲和嘧啶类等杂环化和物等。

Li2B12FxH12—x

的化合物不仅可作电解质盐,其二价阴离子也能发生可逆的氧化还原反应,可作为高伏工作电池的过充保护添加剂。

2.在有机电解液中添加少量的某些物质,它们因比电解液的溶剂有较高的还原电势而优先

发生反应,生成不溶于溶剂的固体产物而覆盖在负极表面上。

因添加剂参与形成SEI膜,

使膜层性能更加优异,我们便把这些物质称之为

SEI膜优化剂。

SEI膜优化剂主要可分

为三类:

(1、物理吸附型,这类添加剂通过物理作用吸附在石墨表面的活性点上,抑制

溶剂还原,如一些卤代物、烷类化合物等;

(2)化学反应型,在首次充电时,这类添加

剂与溶剂的还原反应中间体或产物发生化学反应,

参与形成更加优良的SEI膜,如CO2

Li2CO3,一些含氮化合物和含硼化合物等;(3)电化学反应型,在充电过程中,这类添

加剂会消耗部分充电电荷,发生电化学还原反应,如碳酸亚乙烯酯(VO、CS2亚硫酸

乙烯酯(ES等一些分子中含有双键的化合物。

SEI膜由无机物和有机物组成,包括碳

酸锂、烷基碳酸锂、烷基氧锂及一些电解质盐的分解产物等。

目前,人们普遍认为SEI

膜中的有机成分越多,SEI膜越稳定。

其原因主要是有机碳酸阴离子和锂离子共同作用形成了有机网状化合物。

3.电解液中含有Mn(ll),Co(ll),Ni(ll)等离子,会降低石墨负极的电化学性能,而添加

NaCIO4,则可提高负极的可逆容量和电池的循环性能。

其原因是钠离子会使负极表面的

SEI膜结构改变,性能更加优良。

在1mol/LLi-ClO4/GBL体系中加入顺丁烯二酸酐(MA作为添加剂,MA在较高电位下还原而在石墨表面形成SEI膜,阻止了溶剂GBL的还原分

解,石墨负极的循环可逆容量提高。

VC的添加减少了电解质盐分解产物(LiF和LixPFy

等)的生成量,生成以有机物为主的SEI膜,显著减少了碳负极上气体的生成,电解质

盐分解减少,电池的不可逆容量就会降低。

附着以溶剂还原产物为主的SEI膜的石墨负

极比附着以电解质盐还原产物为主的SEI膜的石墨负极的热稳定性高。

一种新型的锂盐

双草酸硼酸锂[LiB(C2O4)2,Li-BOB]以其具有良好的热稳定性和电化学稳定性等优良特

点引起人们极大关注,如LiBOB中不含氟原子、磺酸基,甚至不含碳氢键,

一般认为正

是这些基团导致了锂盐的热稳定性差、腐蚀铝箔集流体和低电导率。

但由于其成本较咼,

对水敏感等缺点,限制了其完全应用于锂电池的电解质盐

4.阻燃添加剂的阻燃机理分为物理阻燃和化学阻燃两种,物理阻燃是指物质被烧焦,在液相-气相间形成一层隔绝层,阻止了燃烧过程;化学阻燃是指添加剂会促使气相中发生燃烧的反应链被中止。

用于锂离子蓄电池电解液阻燃添加剂的化合物大多为有机磷化

物、有机卤化物和磷-卤、磷-氮复合有机化合物。

这些添加剂的特点是有较高的沸点、闪点,不易燃。

如磷酸三甲酯(TMP)、磷酸三乙酯(TEP)、3-苯基磷酸酯(TPP)、3-丁基

磷酸酯(TBP)、二氟乙酸甲酯(MFA、二氟乙酸乙酯(E-FA)、甲基氟代丁基醚(MFE和六甲基磷腈(HMPN等。

磷酸三甲酯有较好的阻燃效用,但是低压时其在石墨负极不稳定,

易发生还原,添加剂的加入会降低电解液的离子导电率和电池的可逆性。

三(2,2,2—三

氟乙基)亚磷酸酯(TTFP)作为电解液阻燃剂的阻燃性能和电化学稳定性。

实验结果表明其阻燃性能良好。

该文认为其阻燃原因是,TTFP溶剂受热蒸发并以气相的形式进入火焰,在火焰中发生裂解后产生含磷的自由基,含磷自由基能够捕获碳酸酯溶剂燃烧链支化反

应的主要活性成份氢自由基。

由于氢自由基不足,碳酸酯溶剂燃烧链支化反应就会受到抑制从而使电解液的可燃性降低。

TTFP还能提高电池的循环性能和稳定LiPF6基电解液

5.锂离子电导率的提高主要是靠促进支持电解质锂盐的溶解和电离。

主要分为与锂离子发

生作用型和与阴离子发生作用型两大类。

与锂离子作用型主要包括一些胺类和分子中含

有两个氮原子以上的芳香杂环化合物以及冠醚和穴状化合物,一些低分子量的胺类化合

物能够和锂离子发生强烈的配位作用,实现锂离子和有机溶剂的有效分离,减小溶剂化

半径,从而显著提高电解液的电导率,改善电池的比能量和循环效率。

冠醚类等大分子化合物与锂离子间的强螯合作用虽能有效促进锂盐的溶解和电离,但它们与锂离子形成

的螯合物的半径较大,导致锂离子在溶液中的迁移数降低,且会在一定程度上增加锂离子在电解液-电极界面上锂离子插入前的去溶剂化的活化能,线性和环状的氮杂醚类化合物,分子中的氮原子与一个较强的吸电子取代基相连,使得氮原子显缺电子性。

这些显缺电子性的化合物易与锂盐的阴离子结合,达到促进锂盐溶解电离的作用。

硼类化合物,中心的硼原子显缺电子性,形成阴离子接受体。

6.有机电解液中存在痕量的H2O和HF,对性能优良的SEI膜的形成具有一定作用,但如果

含量过高,不仅导致LiPF6的分解,而且会破坏SEI膜这些杂质主要产生于充电过程中,尤其是偶尔的过充。

溶剂首先与从正极中释放出的氧发生化学反应,生成H20和C02

生成的H20进一步使LiPF6水解生成酸性产物,如HF和P0F3HF也是正极材料(尤其

是尖晶石LiMn2O4)发生分解的主要原因。

锂或钙的碳酸盐除掉电解液中的HF,提高了

电解液的稳定性。

A12O3、MgOBaO等也能与HF发生反应,但速度较慢。

一些酸酐类化

合物虽然能较快地去除HF,但却会生成破坏电池性能的其它酸性物质。

为了提高电解液的电导率,作为电解质的锂盐应该具有较小的晶格能和较强的离子溶剂化程度,以便锂盐易于在溶剂中溶解。

有机溶剂能与锂离子配位形成螯合物则将极大地促进锂盐在有机溶剂中的溶解过程。

醚(例如THF)电解液在电压超过4V以上时,就会发生氧化反应,

使有机溶剂发生聚合,如果在有机溶齐吩子中引入一定的电负性基团例如氰基(CN-)、碳酸根

(CQ2-)或酯基(RCOO),将会增加有机溶剂的耐氧化稳定性,氰基的键能高达约930kJ/mol,

具有很强的耐氧化稳定性,如乙氰即使在较高的电压下也难于被氧化.但乙氰对锂不稳定,能

否在锂离子电池中得到应用还有待进一步的研究。

当锂盐溶解于有机溶剂时,溶剂分子所含

的氧原子、氮原子几乎都会与锂发生配位作用形成溶剂络合物,从而使锂离子的迁移数小于

0.5,由此而言降低锂离子的极化效应对锂离子迁移数的影响以及提高电解液的导电性是选择溶剂的一个重要标准。

•在PC或EC基有机电解液中,阴阳离子间缔合作用按以下递减顺序:

LiCF3SO3>LiBF4>LiCIO4>LiPF6>LiN(CF3SO2)2>LiAsF6。

相同条件下的电导率顺序递减一般为:

LiAsF6>LiPF6>LiCIO4>LiBF4>LiCF3SO3>LiN(CF3SO2)2。

有机阴离子盐LiCF3SO3和

LiN(CF3SO2)2及其同类物具有良好的电化学稳定性和适当的电导率,充电时对正极集流体有腐蚀。

在电池首次充放电过程中作为锂离子电池的极性非质子溶剂不可避免地都要在电极与电解液的相界面上反应,形成覆盖在电极表面上的钝化薄层一固体电解质相界面膜,SEI膜的形

成一方面消耗了电池中有限的锂离子,另一方面也增加了电极/电解液的界面电阻,造成了一

定的电压滞后•但优良的SEI膜具有有机溶剂的不溶性,允许锂离子比较自由地进出电极而溶剂分子却无法穿越,从而阻止了溶剂分子共插对电极的破坏,大大提高了电池的循环寿命,

SEI膜机制主要包括以下内容:

(1)在一定的电极电位下,电解液中溶剂分子、添加剂分子、甚至是杂质分子在电极/电解液界面发生不可逆还原或氧化分解的反应,形成SEI;

(2)不可

逆反应主要发生在电池首次充放电过程中;(3)电极表面完全被SEI膜覆盖后,不可逆反应即

停止;(4)一旦形成稳定的SEI膜,充-放电过程可多次循环.在SEI膜机制中,正极表面和负极表面的成膜机理不同,一般认为碳负极表面上的SEI膜是由溶剂分子、添加剂分子、甚至是

杂质分子在碳负极表面上还原的产物组成的,正极表面上的SEI膜是由溶剂分子、添加剂分

子、甚至是杂质分子在正极表面上被氧化的产物组成的。

:

(1)SEI膜的组成与形成SEI膜的

反应;

(2)SEI膜的结构与锂离子传导机理;(3)SEI膜的电极界面稳定性。

新开发、研究的导电锂盐主要是LiCF3SO3和LiN(CF3SO2)2等类似化合物,这类导电盐的稳

定性好,而且由于阴离子电荷的非局域化,离子半径大,具有相当高的离子电导率。

电解液稳定添加剂

含有LiPF6的电解液中,在痕量水的作用下,LiPF6分解产生HF,HF与锰酸锂发生如下反应:

LiMn2O4+4H+宀Li++入-MnO2+Mn2++2H2O,生成的Mn24溶解在电解液中,锰的溶解不仅使LiMn2O4活性物质的绝对量减少,还会引发LiMn2O4晶格结构的转变,使LiMn2O4丧失或部分丧失电化学活性,降低其稳定性能,影响电池的循环寿命。

高温条件下,LiMn2O4

电极具有催化电解液分解的作用,电解液的分解又会产生HF,进而促进了锰的溶解,磺酸酯

是一种重要的有机成膜添加剂,烷基磺酸酯如1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯等及

烯基磺酸酯如1,3-丙烯磺酸内酯具有良好的成膜性能和高低温导电性能,是近年来人们看

好的锂离子电池有机电解液添加剂,尤其是用在负极为石墨、正极为尖晶石LiMn2O4的锂离

子电池电解液中,电池的高温性能明显改善。

1,3-PS在较高的负极电位下在石墨负极表面

还原生成致密的SEI膜,这种优质膜的形成,能大大提高石墨/钴酸锂电池在低温-20C和高温80C下的放电容量,1,4-BS在负极石墨表面还原形成优质的SEI膜,抑制溶剂的进一

步还原和PC嵌入石墨层间。

1,3-丙烯磺酸内酯与碳酸亚乙烯酯混合使用,电池的性能会更好。

LiBOB在石墨电极表面具有优良的成膜性质,BOB可以在较高的负极电位[1.8V(vs.Li/Li+)]

下诱发电极界面SEI膜的形成,有效地阻止溶剂分子嵌入石墨层间,LiBOB,可极大提高

尖晶石LiMn2O4电池的热稳定性,但LiBOB的加入会增加SEI膜内阻,LiC2O4BF2(简称

LiDFOB)与LiB(C2O4)2(简称LiBOB)发现DFOB在1.7V(vs.Li/Li+)的负极电位下发生还原反应,生成致密的SEI膜,能较好地提高高温(55C)下电池的容量保持率,提高循环寿命,

且形成的SEI膜内阻比LiBOB小,在电化学循环过程中,电解液组分氧化分解会产生微量

酸,LiPF6的热稳定性差,甚至在室温下就可能发生如下分解反应:

LiPF6(s)LiF(s)+

PF5(g),气态PF5具有较强的路易斯酸性,会与溶剂分子中氧原子上的孤电子对作用而使溶

剂发生分解反应,三氟乙基亚磷酸(简称TTFF),TTFP可以与PF5通过电子对形成配合物,

抑制单分子PF5与电解液直接接触,发生分解反应,同时TTFP还可以起到成膜和阻燃作用,

的嘧啶和六甲基磷酰胺,这两种添加剂也能与PF5形成配合物,提高电池在高温下(85C)

的热稳定性,并且对电解液的电导率影响很小,异氰酸化合物也能与PF5形成配合物,起到

稳定LiPF6,进而提高电池热稳定性和循环寿命的作用。

正极表面膜的主要成分是Li2CO3、

烷氧基碳酸锂或聚烷氧基碳酸锂、LiF及MnF零的一种或几种,TPFPB能提高电解液的分解

电压,增加正极表面LiF在电解液中的溶解,提高电池的容量保持率。

二甲基乙酰胺(简

称DMAC是一种极性疏质子溶剂,具有较宽的电化学稳定窗口(0〜4.5V,vs.Li/Li+),可

以作为LiPF6基电解液的热稳定添加剂。

电解液中加入少量DMAC可以抑制尖晶石LiMn2O4

表面膜的腐蚀,减少LiF在正极界面的沉积,提高电池的稳定性能。

A12O3、MgOBaO和锂

或钙的碳酸盐等作为添加剂加入到电解液中,它们将与电解液中微量的HF发生反应,降

低HF的含量,阻止其对电极的破坏和对LiPF6分解的催化作用,有机胺化合物能通过分子中的氢原子与水分子形成较弱的氢键,从而阻止水与LiPF6的反应。

乙醇胺,它不影响电解液

与正、负极的相容性,并能抑制电解液中LiPF6的水解和热解反应,使电池的容量衰减率降

低50%提高了电解液的稳定性和电池的循环寿命,六甲基硅氮烷,提高了LiMn2O4电池的高

温储存能力,通过研究其作用机理发现,六甲基硅氮烷与电解液中微量水反应生成NH3生

成的”日3^电解液中微量HF发生中和反应,

SEI膜主要由Li2CO3、烷基锂、烷氧基锂和其他锂盐组成。

SEI膜主要分成两层,即嵌锂前

形成的多孔层和嵌锂时形成的紧密层,后者电导率较高。

VCVEC,AEC,VA等可进行电化学聚合成膜。

具有较溶剂高的还原电位,充电时优先形成

难溶固体产物覆盖在石墨表面,通过还原产物在石墨表面催化活性点吸附辅助SEI成型。

要为S基、N基化合物,如SO2CS2、SX2-、ESPS及硝酸盐,该类添加剂由于S自身的氧化-还原穿梭作用,引起一定程度的电池自放电。

最具代表性的如TPFPB,理论上它能和LiF6以1:

1(物质的量比)形成复合化合物,添加0.1~0.2mol/LTPFPB(tris-(pentafluorophenylborane))就能有效地提高LiPF6和LiBF4

基电解液的循环性能和降低容量衰减率

锰系材料的性能弱化主要由于充电(特别是过充电)导致的水、酸及电解液的不可逆氧化,

通过加入N-Si基化合物可起到捕获H2O和HF、保护锰系正极材料的目的

是加入的添加剂与溶解的金属离子联合作用在电极表面生成难溶物。

如LiBOB与Mn2+可互相

作用形成如下网状结构达到保护锰系正极材料的目的

一些含>C=O或>P=O的化合物就能通过其与PF5间的弱结合起到降低PF5反应活性的目的。

如TTFP

学中断反应。

物理阻隔即反应过程中添加剂作用在界面形成隔离层以阻止反应继续发生。

学中断反应即添加剂在高温下产生阻燃性自由基,吸收可燃性自由基,从而中断链式反应

的发生,避免燃烧或爆炸。

前者主要应用于浓缩相,后者用于气相阶段,

电解液中的EMC和H2O降低了1MLiPF6电解液的热稳定性。

其中,EMC分解为DEC和DMC,而DEC和DMC又与LiPF6的分解产物PF5发生系列复杂的有机化学反应,释放大量的热与气体。

说明EMCh应用于高温条件下的电池,或者对电池热安全性要求较高的环境时,需要尽可能减少电解液中EMC的含量。

常规锂离子电池有机电解液本身的热稳定性

并不差,关键是在真实电池中,电解液与充放电态的正极、负极发生相互作用,这才是锂离

子电池安全性的根本所在。

,纯LiPF6直到250C仍是热稳定的。

所有正极材料表面均含有一L

iF、ROCO2Li、ROCO2M、ROLi、MCO3、Li2CO3,MF2(M=过渡金属)、聚碳酸酯,在高温条件下,PF6-阴离子与溶剂之间,以及所有电解液组成与正极材料之间存在着明显的氧化还原反应,PF6-及其产物PF5与溶剂分子生成HF,而HF会与负极表面

上固体电解质膜(SEI膜)中的主要成分ROLi、ROCO2L、Li2O和LiOH发生反应,生

成LiF并在负极表面发生沉积。

含有LiF的SEI膜会严重阻碍Li离子的迁移,富集程度越高,

影响程度越大。

同时产生的高阻抗物质会使石墨颗粒之间绝缘隔离,随着高温条件下不断充

放电,电极界面阻抗以及活性物质与导电物质间的绝缘隔离,不断导致负极性能恶化,最后

导致锂离子电池容量太低而失效。

常规电解液中加入有机硅化合物,能够明显改善电池的高

温性能,而没有加入此种添加剂的常规电解液的高温性能就非常差。

他们认为机硅化合物R4Si会与电解液中的HF和H20发生反应,避免他们与SEI膜发生危害负极性能的副反应,从而改善了电池的高温性能,温下电解液与LiC6电极的热反应是SEI膜的碎裂反应以及与粘结

剂和电解液的反应,反应主要发生在负极的表面,石墨的晶型结构在160C热反应前后没有

变化。

LiAsF6有毒,LiCI04易于氧化爆炸,但由于其公认的电化学稳定性,被广泛用于电化学试验,LiBF4电导率小,且可能会在负极表面的发生反应进而严重影响极化,但却是对尖晶石锰酸锂的腐蚀是最小的,LiSO3CF3

电解液的电导率过低,LiN(SO2CF3)2和LiC(SO2CF3)3则对正极不利一一在正极形成的氧化膜强度不够,并会腐蚀铝集流体。

是LiBETI>LiFAP>LiPF6。

两种锂盐的联合使用对正负极

有一种独特的作用。

他们认为联合使用两种锂盐的独特效果在于F-1andPF3(CF2CF3)3-之

间发生了一种亲核反应,这个反应通过形

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1