高中人教版全套教师用书选修3物质结构与性质.docx

上传人:b****7 文档编号:24062125 上传时间:2023-05-23 格式:DOCX 页数:120 大小:1.34MB
下载 相关 举报
高中人教版全套教师用书选修3物质结构与性质.docx_第1页
第1页 / 共120页
高中人教版全套教师用书选修3物质结构与性质.docx_第2页
第2页 / 共120页
高中人教版全套教师用书选修3物质结构与性质.docx_第3页
第3页 / 共120页
高中人教版全套教师用书选修3物质结构与性质.docx_第4页
第4页 / 共120页
高中人教版全套教师用书选修3物质结构与性质.docx_第5页
第5页 / 共120页
点击查看更多>>
下载资源
资源描述

高中人教版全套教师用书选修3物质结构与性质.docx

《高中人教版全套教师用书选修3物质结构与性质.docx》由会员分享,可在线阅读,更多相关《高中人教版全套教师用书选修3物质结构与性质.docx(120页珍藏版)》请在冰豆网上搜索。

高中人教版全套教师用书选修3物质结构与性质.docx

高中人教版全套教师用书选修3物质结构与性质

第一章原子结构与性质

本章说明

一、教学目标

1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。

2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。

3.了解原子核外电子的运动状态,知道电子云和原子轨道。

4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。

5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。

6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。

二、内容分析

1.地位与功能

本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。

总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。

尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。

通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。

2.内容的选择与呈现

根据课程标准对“物质结构与性质”模块的要求,本章依据本模块的“主题1原子结构与元素的性质”的要求进行内容的选取,充分考虑了初中化学和化学2中的原子结构知识的基础,注意知识的衔接与深化。

在第一节“原子结构”中,在学生已有知识的基础上,教科书不再重复建立原子结构的概念,而是直接建立核外电子的能层(即“电子层”)和能级(即“电子亚层”)的概念,给出每一能层有几个能级,每个能级最多可以容纳几个电子,教科书没有介绍原子核的组成;有了能层和能级的概念,直接给出构造原理,并根据构造原理进行核外电子排布;有了构造原理,又由构造原理引出了能量最低原理,并同时引出了基态和激发态的概念,以及原子光谱;由于在第二章介绍共价键时需要涉及电子云和原子轨道等概念,该节在描述原子核外电子的运动状态时介绍了这两个概念,有了原子轨道的概念,结合原子核外电子的轨道排布式,简单介绍了泡利原理和洪特规则。

本节内容在陈述方式上可以说是一种倒叙式,即直接给出知识而不加以理论上解释,如把构造原理看作是一个经验规律,直接给出了原子核外电子排布的次序。

但随着学习的不断深入,前面直接给出的一些结论性的知识也不断地得到了解释。

在第二节“原子结构与元素的性质”中,首先由原子核外电子排布的变化规律引出元素周期系,接着介绍了元素周期表,由于学生对元素周期表的结构已有一定的了解,为了避免重复,教科书设计了一个“科学探究”,要求学生从更高的视角来进一步认识元素周期表的结构;元素周期律的内涵比较广泛,教科书重点讨论了原子半径、电离能和电负性的周期性变化,而对于学生已知同周期的主族元素的最高化合价和最低化合价、金属性和非金属性的周期性变化,教科书设计了一个“学与问”;在本节的最后设计了一个“科学探究”,结合元素周期表与元素的电负性简单介绍了对角线规则。

本节在呈现方式上,充分体现了学生自主学习,设计了两个“科学探究”和三个“学与问”,以及两个“科学史话”;另外,教科书还使用了多样化的图表。

除学科知识外,本章内容的选取也注意了对学生进行科学方法、科学态度的教育,如“科学史话”中提供的素材,既有利于对学生进行科学方法、科学态度的教育,也有利于激发学生的学习兴趣。

关于章图和节背景图的说明:

①本章章图由一幅主图、一幅组图和一小图组成,主图为原子隧道扫描显微镜的探测器正检测原子存储的信息;组图包含七幅小图,描述了人类认识原子结构的发展史;另一小图是在固体表面操纵原子写出的“原子”两字。

②节背景图是用隧道扫描显微镜获得的铜原子的图像。

3.内容结构

三、课时建议

第一节 原子结构3课时

第二节 原子结构与元素的性质              3课时

复习与机动                                2课时

 

第一节原子结构

 

一、教学设计

 

本节从介绍原子的诞生(宇宙大爆炸)入手,在介绍能层、能级的概念后,直接给出构造原理并根据构造原理进行原子的核外电子排布;在原子的基态与激发态概念的基础上介绍电子的跃迁和光谱分析;根据电子云与原子轨道等概念,进一步介绍核外电子的运动状态,并导出泡利原理和洪特规则。

本节内容比较抽象,教学过程中应注意培养学生的空间想象能力、分析推理能力及抽象概括能力。

 

教学重点:

 

1.根据构造原理写出1~36号元素原子的电子排布式;

2.核外电子的运动状态,电子云与原子轨道;

3.泡利原理、洪特规则。

 

教学难点:

 

1.电子云与原子轨道;

   2.基态、激发态与光谱。

 

具体教学建议:

 

1.结合本章章图可以课前安排学生收集有关原子结构理论发展史的材料,课上组织交流讨论。

通过活动使学生了解原子结构理论发展史中各种理论的要点和相关科学家的重要贡献,体会人类对原子结构的认识是一个逐步深入的过程,科学理论的发展是一个逐步完善的过程。

在活动中使学生感悟科学家献身科学的精神和进行科学探索中所具有的科学态度。

 

2.在介绍能层与能级时,可以通过思考“电子是怎样在核外空间排布的?

”,引发学生对核外电子分层排布的复习。

根据学生已有的核外电子分层排布的知识进一步明确核外电子是按照能量的不同分成不同的能层及能级。

在理解能层与能级之间的关系时,可利用教科书中的形象比喻:

“能层是楼层,能级是楼梯的阶级”。

 

3.对于构造原理的教学,重点应放在应用上。

构造原理给出了电子的排布次序,教学时要求学生会应用构造原理写出基态原子的电子排布式,不要求学生深究构造原理中能级次序的原因。

 

4.对于电子云与原子轨道的教学,可以运用电脑模拟或制作原子轨道模型等手段帮助学生理解电子云与原子轨道的概念。

 

教学方案参考

 

【方案Ⅰ】问题探究学习能层、能级和构造原理

 

创设问题情景:

从宇宙大爆炸、原子的诞生等素材引发学生探索原子奥秘的兴趣。

 

提出问题:

组织学生交流课前收集的有关原子结构理论发展的历史资料,结合本章章图中人类认识原子结构理论发展的图示,形成对现代原子结构理论的初步认识,进而提出问题——核外电子是怎样排布的?

 

问题探究:

(1)学生根据已有的核外电子分层排布的知识,结合“学与问”的三个问题,阅读教科书,形成对能层、能级的认识;

(2)让学生带着问题去分析构造原理(教科书中的图12),探究其中的规律。

 

讨论与交流:

根据上述问题学生发表自己的见解,并相互交流补充。

 

   总结评价:

引导学生总结核外电子排布所遵循的规律和方法。

(1)根据构造原理给出的电子排布次序,可以写出基态原子的电子排布式;

(2)对于处在不同能层的英文字母不同的能级,电子排布的先后次序为:

(n-2)f、(n-1)d、ns。

 

应用反馈:

通过练习书写一些元素(如N、Cl、K、Fe等)原子的核外电子排布式,进一步掌握构造原理。

 

【方案Ⅱ】问题解决学习原子基态、激发态与光谱

 

创设问题情景:

利用录像播放或计算机演示日常生活中的一些光现象,如霓虹灯光、激光、节日燃放的五彩缤纷的焰火等。

 

提出问题:

这些光现象是怎样产生的?

 

问题探究:

指导学生阅读教科书,引导学生从原子中电子能量变化的角度去认识光产生的原因。

 

问题解决:

联系原子的电子排布所遵循的构造原理,理解原子基态、激发态与电子跃迁等概念,并利用这些概念解释光谱产生的原因。

 

应用反馈:

举例说明光谱分析的应用,如科学家们通过太阳光谱的分析发现了稀有气体氦,化学研究中利用光谱分析检测一些物质的存在与含量,还可以让学生在课后查阅光谱分析方法及应用的有关资料以扩展他们的知识面。

 

【方案Ⅲ】问题探究学习电子云、原子轨道、泡利原理及洪特规则

 

提出问题:

组织学生从质量、运动速度、运动范围等方面对比核外电子运动和宏观物体运动的区别,得出不能用描述宏观物体运动的方法来描述微观粒子运动的结论,并提出问题——如何描述电子在原子核外的运动?

 

问题探究:

(1)指导学生阅读教科书的相关内容,分析理解电子在原子核外空间出现概率的方式来描述电子的运动。

通过电脑动画演示电子云的形成过程、用模型直观地展示原子轨道等手段认识电子云和原子轨道的概念;

(2)根据教科书中“科学探究”给出的第二周期基态原子的电子排布图,组织学生讨论电子在同一能级上排布的规律。

 

讨论与交流:

让学生发表自己的见解,并相互交流补充。

 

总结评价:

引导学生总结核外电子在同一能级上排布时所遵循的规律。

(1)一个轨道上最多只能容纳2个电子且自旋方向相反即泡利原理;

(2)电子在同一能级上排布时,总是优先单独占据不同的轨道而且自旋方向相同,即洪特规则。

 

应用反馈:

通过练习一些元素(如N、O、Mg、Si等)原子的电子排布图,加深对泡利原理和洪特规则的理解。

 

二、活动建议

 

【科学探究】

 

1.每个原子轨道里最多只能容纳2个电子。

2.当电子排布在同一能级时,总是优先单独占据不同的轨道而且自旋方向相同。

 

教科书在此设计一个科学探究,具有承上启下的作用,一方面把刚介绍的原子轨道图形用方框来代表,有了方框表示法就有了元素基态原子的电子排布的轨道表示式;通过探究第二周期元素基态原子的电子排布的轨道表示式,引出了泡利原理和洪特规则。

在引导学生进行探究活动的过程中,要注意引导学生观察,既要观察每种元素基态原子的电子排布图,也要观察整个第二周期元素基态原子的电子排布的特点。

在全面观察的基础上,要注意引导学生发现规律,并组织学生把发现的规律进行交流。

 

三、问题交流

 

【学与问】 

1.原子核外电子的每一个能层最多可容纳的电子数为2n2。

2.每个能层所具有的能级数等于能层的序数(n)。

3.英文字母相同的不同能级中所容纳的最多电子数相同。

 

【思考与交流】 

1.铜、银、金的外围电子排布不符合构造原理。

2.符号[Ne]表示Na的内层电子排布与稀有气体元素Ne的核外电子排布相同。

 

O:

[He]2s22p4 Si:

[Ne]3s23p2 Fe:

[Ne]3s23p63d64s2或[Ar]3d64s2

 

四、习题参考答案 

1.A、D   2.D   3.B   4.C   5.C  

6.C是Mg的基态原子的电子排布式,而A、B、D都不是基态原子的电子排布。

 

第二节原子结构与元素的性质

一、教学设计

 

本节内容分为两部分:

第一部分在复习原子结构及元素周期表相关知识的基础上,从原子核外电子排布的特点出发,结合元素周期表进一步探究元素在周期表中的位置与原子结构的关系。

第二部分在复习元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性周期性变化的基础上,进一步从原子半径、电离能以及电负性等方面探究元素性质的周期性变化规律。

教学过程中应注意帮助学生根据元素原子核外电子排布特点,以及从原子半径、电离能及电负性等方面加深对元素周期律、元素周期表及元素“位—构—性”三者关系的理解。

 

教学重点:

1.元素的原子结构与元素周期表结构的关系;

2.电离能、电负性与元素性质的关系;

3.原子半径、第一电离能、电负性的周期性变化。

 

教学难点:

1.元素周期表的分区;

2.电离能、电负性。

 

具体教学建议:

 

1.可以以问题思考的形式复习原子结构、元素周期律和元素周期表的相关知识,引导学生从元素原子核外电子排布特征的角度进一步认识、理解原子结构与元素在周期表中位置的关系。

 

2.对于电离能和电负性概念的教学,应突出电离能、电负性与元素性质间的关系。

在了解电离能概念和概念要点的基础上,重点引导学生认识、理解元素电离能与元素性质间的关系。

通过教科书中图1-21列举的Li~Ne、Na~Ar第一电离能数值,讨论元素的第一电离能与元素金属性、非金属性的关系。

通过“学与问”表格中所列的Na、Mg、Al的逐级电离能的数据引导学生寻找其中的规律并分析:

Na、Mg、Al的电离能为什么会逐渐增大?

Na、Mg、Al的逐级电离能数据为什么会出现突变?

这与它们的化合价有何关系?

等等。

从而加深学生对电离能与元素性质关系的理解。

 

   电负性概念的教学,可以通过引导学生对教科书中图123所列元素的电负性数据与元素性质间规律的探究,使学生认识到:

金属元素的电负性较小,非金属元素的电负性较大;元素的电负性越小,元素的金属性越强,元素的电负性越大,元素的非金属性越强,电负性的大小可以作为判断元素金属性和非金属性强弱的尺度。

 

3.可利用数据、图表进行教学,如利用教科书中图120引导学生推出原子半径的变化规律:

同一周期元素从左到右,原子半径逐渐减小;同一主族元素从上到下,原子半径逐渐增大。

利用教科书中图121探索元素的第一电离能的变化规律。

利用教科书中图123探究电负性周期性变化的规律:

同一周期的元素的电负性从左到右逐渐增大;同一主族的元素的电负性从上到下逐渐减小。

 

教学方案参考

 

【方案Ⅰ】问题探究学习原子结构与元素周期表的关系

 

   回忆复习:

(1)元素原子核外电子排布的周期性变化有什么特点?

(2)元素周期表的结构如何?

(3)元素的原子结构与元素在周期表中的位置有什么关系?

 

提出问题:

元素原子的核外电子排布与元素周期表的关系是怎样的?

进而引导学生进一步探究原子结构与元素周期表的关系。

 

讨论与思考:

结合上述问题开展课堂讨论,复习相关的原子结构与元素周期表知识,引导学生从元素原子核外电子排布特征的角度进一步思考原子结构与元素在周期表中位置的关系。

 

问题探究与讨论:

结合教科书中的“科学探究”引导学生进行问题探究,并在探究的基础上进一步讨论下列问题:

(1)为什么元素周期系中的周期不是单调的?

试用构造原理加以解释;

(2)将元素周期表分成s区、p区、d区、f区和ds区的依据是什么?

(3)元素周期表中的区与族存在着什么样的关系?

 

总结评价:

在学生讨论交流的基础上,总结归纳出元素的外围电子排布的特征与元素周期表结构的关系;元素原子的核外电子排布与元素在周期表中的位置、元素性质三者间的关系。

 

【方案Ⅱ】问题解决学习原子半径、电离能和电负性周期性变化的规律

 

回忆复习:

随着元素原子的核电荷数的递增,核外电子排布、化合价、金属性和非金属性等发生周期性的变化。

 

提出问题:

元素的原子半径、电离能、电负性等随着元素原子的核电荷数的递增是否也呈现周期性变化?

 

问题解决:

(1)指导学生分析教科书中的图120,找出主族元素原子半径在同一周期、同一主族中的变化规律,并分析发生这种变化的原因;

(2)指导学生阅读教科书相关内容,了解电离能的概念,理解“气态”“基态”“电中性”“失去一个电子”等要点。

通过教科书中图1-21列举的Li~Ne、Na~Ar第一电离能数值,找出元素的第一电离能与元素金属性、非金属性的关系,以及元素第一电离能发生周期性变化的规律;(3)根据教科书中的图1-23,找出元素电负性发生周期性变化的规律,以及元素的电负性与元素性质间的关系。

 

讨   论与交流:

通过上述解决问题的学习活动后,组织学生参与课堂讨论与交流互补,得出规律或结论。

 

总结评价:

在分析讨论的基础上,引导学生总结原子半径、第一电离能、电负性发生周期性变化的规律;总结利用数据和图表探索规律的思想方法。

 

二、活动建议

 

【科学探究1】

 

1.元素周期表共有7个周期,每个周期包括的元素数目分别为:

第一周期2种;第二周期8种;第三周期8种;第四周期18种;第五周期18种;第六周期32种;第七周期为不完全周期。

每个周期开头第一个元素的最外层电子的排布通式为ns1,结尾元素的最外层电子的排布通式为ns2np6。

因为第一周期元素只有一个1s能级,其结尾元素的电子排布式为1s2,跟其他周期的结尾元素的电子排布式不同。

 

2.元素周期表共有18个纵列;每个纵列的价电子层的电子总数相等。

 

3.s区有2个纵列,d区有8个纵列,p区有6个纵列;从元素的价电子层结构可以看出,s区、d区和ds区的元素在发生化学反应时容易失去最外层电子及倒数第二层的d电子,呈现金属性,所以s区、d区和ds区的元素都是金属。

 

4.元素周期表可分为主族、副族和0族;从教科书中图1-16可知,副族元素(包括d区和ds区的元素)介于s区元素(主要是金属元素)和p区(主要是非金属元素)之间,处于由金属元素向非金属元素过渡的区域,因此,把副族元素又称为过渡元素。

 

5.这是由元素的价电子层结构和元素周期表中元素性质递变规律决定的,在元素周期表中,同周期元素从左到右非金属性逐渐增强,金属性逐渐减弱,同主族元素从上到下非金属性逐渐减弱,金属性逐渐增强,结果使元素周期表右上角三角区域内的元素主要呈现出非金属性。

 

6.由于元素的金属性和非金属性之间并没有严格的界线,处于非金属三角区边缘的元素既能表现出一定的非金属性,又能表现出一定的金属性,因此,这些元素常被称为半金属或准金属。

 

【科学探究2】

 

1.(略)

 

2.锂和镁在过量的氧气中燃烧,不形成过氧化物,只生成正常氧化物;铍和铝的氢氧化物都是两性氢氧化物;硼和硅的含氧酸酸性的强度很接近,都是弱酸。

教科书上几对处于对角的元素在性质上相似,可以粗略认为它们的电负性相近的缘故。

 

三、问题交流

 

【学与问1】

同周期的主族元素从左到右,元素最高化合价和最低化合价逐渐升高;金属性逐渐减弱,非金属性逐渐增强。

 

【学与问2】

同周期主族元素从左到右,原子半径逐渐减小。

其主要原因是由于核电荷数的增加使核对电子的引力增加而带来原子半径减小的趋势大于增加电子后电子间斥力增大带来原子半径增大的趋势。

 

同主族元素从上到下,原子半径逐渐增大。

其主要原因是由于电子能层增加,电子间的斥力使原子的半径增大。

 

【学与问3】

 

1.第一电离能越小,越易失电子,金属的活泼性就越强。

因此碱金属元素的第一电离能越小,金属的活泼性就越强。

 

2.气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能(用I1表示),从一价气态基态正离子中再失去一个电子所需消耗的能量叫做第二电离能(用I2表示),依次类推,可得到I3、I4……同一种元素的逐级电离能的大小关系:

I1

这是因为随着电子的逐个失去,阳离子所带的正电荷数越来越大,再要失去一个电子需克服的电性引力也越来越大,消耗的能量也越来越多。

 

Na的I1比I2小很多,电离能差值很大,说明失去第一个电子比失去第二电子容易得多,所以Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小很多,所以Mg容易失去两个电子形成+2价离子;Al的I1、I2、I3相差不多,而I3比I4小很多,所以Al容易失去三个电子形成+3价离子。

 

四、习题参考答案

 

1.能层数最外层电子数最外层电子数能层数

2.碱金属稀有气体

3. 

4.

(1)三  ⅦA  1s22s22p63s23p5  Cl  HClO4 

 

(2)四ⅡA   1s22s22p63s23p64s2   Ca   Ca(OH)2

 

5.主族元素的核外电子排布最后填入的能级是s或p,而副族元素的核外电子排布最后填入的能级为d或f;主族元素的价电子层为最外层的s、p能级,都不包含d能级,而副族元素的价电子层除最外层的s、p能级外,还包含次外层的d能级及倒数第三层的f能级。

 

6.氢原子核外只有一个电子(1s1),既可以失去这一个电子变成+1价,又可以获得一个电子变成-1价,与稀有气体He的核外电子排布相同。

根据H的电子排布和化合价不难理解H在周期表中的位置既可以放在ⅠA,又可以放在ⅦA。

 

7.元素的金属性与非金属性随核电荷数递增呈现周期性变化,在同一周期中,从左到右元素的金属性递减非金属性递增。

例如,第三周期元素:

根据Na、Mg、Al与水的反应越来越困难,以及NaOH、Mg(OH)2、Al(OH)3碱性递减,说明Na、Mg、Al的金属性逐渐减弱;根据Si、P、S、Cl形成氢化物越来越容易,且生成的氢化物稳定性依次增强,以及H2SiO3、H3PO4、H2SO4、HClO4酸性递增,说明Si、P、S、Cl的非金属性逐渐增强。

 

8.金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。

 

9.元素原子的最外层电子数随原子的核电荷数递增呈现周期性的变化,由于原子的最外层电子数决定了元素的化合价,所以元素的化合价就会随着原子的核电荷数递增呈现周期性变化。

 

*10.第八周期总共应有50种元素。

 

*11.(略)

 

复习题参考答案

 

1.A  2.A 3.A 4.B

 

5.

(1)Na K Mg Al C O Cl Br Ar   Ar

 

(2)NaOH

 (3)K>Na>Mg

 (4)H2O   2H2O+2Na=2NaOH+H2↑>

 (5)NaBr

 (6)18

 6CO2和SO2。

 7X在第二周期ⅥA族,Y在第三周期ⅥA族;SO2和SO3。

 

*8(略)*9(略)*10(略

 

教学资源1

1.原子概念和原子结构模型的演变

人类对原子的认识史可以大致划分为5个阶段:

(1)古代原子论;

(2)道尔顿原子论;(3)汤姆生原子模型和卢瑟福原子模型;(4)波尔原子模型;(5)原子结构(核外电子运动)的量子力学模型。

(1)古代原子论

古希腊原子论有以下5个要点:

①所有物体都是由原子构成的。

原子极小,看不到,不能继续被分割成更小的组成部分。

②原子之间是虚空。

古希腊原子论者的“虚空”就是“真空”。

③原子完完全全是实实在在的固体。

换句话说,原子内部不再有虚空。

④原子是均一的,或者说,是没有内部结构的。

⑤原子是不同的。

即大小不同,形状不同,重量(质量)不同。

(2)道尔顿原子论

1805年道尔顿明确地提出了他的原子论,这个理论的要点有:

每一种元素有一种原子(他称其为“简单原子”);同种原子质量相同,不同种原子质量不同;原子不可再分;一种原子不会转变为另一种原子;化学反应只是改变了原子的结合方式,使反应前的物质变成反应后的物质。

道尔顿还创立了相对原子质量的概念,认为相对原子质量是一种原子不同于另一种原子的本质特征。

正是道尔顿的原子的概念明确地与化学元素挂起钩来,道尔顿的原子论可称为“化学原子论”。

道尔顿建立的化学原子论揭示了物质的组成和化学变化的本质,确立了化学组成和变化的定量基础,开创了化学的现代发展。

图1-1是道尔顿用来表示原子的符号,是最早的元素符号。

 

(某些化合物的错误组成是由于错误的相对原子质量导致的)

图1-1道尔顿的(简单)原子和复合原子(分子)

(3)汤姆生原子模型和卢瑟福原子模型

1897年汤姆生发现原子中存在电子以后,又于1904年提出了一种原

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 成考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1