壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx

上传人:b****8 文档编号:24056082 上传时间:2023-05-23 格式:DOCX 页数:16 大小:565.06KB
下载 相关 举报
壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx_第1页
第1页 / 共16页
壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx_第2页
第2页 / 共16页
壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx_第3页
第3页 / 共16页
壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx_第4页
第4页 / 共16页
壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx

《壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx》由会员分享,可在线阅读,更多相关《壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx(16页珍藏版)》请在冰豆网上搜索。

壳聚糖修饰植物甾醇脂质体的制备及稳定性研究.docx

壳聚糖修饰植物甾醇脂质体的制备及稳定性研究

壳聚糖修饰植物甾醇脂质体的制备及稳定性研究

程铭1焦文佳1陶冶1夏廉臣1王雪晖1王春维1,2

(武汉轻工大学食品科学与工程学院1,武汉430023;

国家粮食局粮油资源综合开发工程技术研究中心2,武汉430023)

摘要采用乙醇注入法制备植物甾醇脂质体(PhytosterolLiposome,PLs),并以不同浓度壳聚糖进行修饰优化制备工艺;通过粒径、PdI、电位和稳定性指数,分析评价了壳聚糖修饰植物甾醇脂质体(ChitosanmodifiedPhytosterolLiposome,CS-PLs)在不同环境下的稳定性;并对壳聚糖修饰前后PLs进行了体外胃肠消化环境稳定性试验。

结果表明:

当壳聚糖浓度为0.3mg/mL时可获得粒径小、分布均一的CS-PLs;且pH、温度和离子强度及种类均对CS-PLs稳定性有显著影响;PLs经壳聚糖修饰前后,胃消化稳定性均良好,但在模拟肠消化环境中,经壳聚糖修饰后的PLs表现出更好的稳定性。

关键词植物甾醇脂质体壳聚糖稳定性体外消化

Preparationandstabilitypropertiesofchitosanmodifiedphytosterolliposomes

ChengMing1JiaoWenjia1TaoYe1XiaLianchen1WangXuehui1WangChunwei1,2

(CollegeofFoodscienceandEngineering,WuHanPolytechnicUniversity1,WuHan430023;

GrainandOilResourcesComprehensiveExploitationandEngineeringTechnologyResearchCenterof

StateAdministrationofGrain2,WuHan430023)

AbstractPhytosterolliposomes(PLs)werepreparedbyethanolinjectionmethod,andthepreparationprocesswasoptimizedbychitosanmodifiedwithdifferentconcentration.Thestabilityofchitosanmodifiedphytosterolliposomes(CS-PLs)wasanalyzedandevaluatedbyparticlesize,PdI,ZetapotentialandTSIindifferentenvironments.ItalsocomparedthestabilityofPLswithCS-PLsinvitrogastrointestinaldigestionenvironment.TheresultsindicatedthatthesmallanduniformparticlesizeofCS-PLscanbeobtainedwithchitosanconcentrationof0.3mg/mL.ThepH,temperature,ionicstrengthandtypehavegreateffectonthestabilityofCS-PLs.ThePLswithorwithoutchitosanmodifiedwerestableingastricdigestion;butCS-PLsshowedbetterstabilityinsimulatedintestinaldigestionthanPLs.

KeywordsPhytosterolliposomes,Chitosan,Stability,Invitrodigestion

中图分类号:

(TS201.2)文献标识码:

文章编号:

植物甾醇和胆固醇同属甾醇类,都是以环戊烷全氢菲为骨架的一种醇类化合物,在结构上极其相似,植物甾醇与胆固醇的不同之处在于其支链上的双键和甲基[1]。

植物甾醇较胆固醇支链更长,有更强的疏水性[2],可降低人体对胆固醇的吸收。

胆固醇是脂质体等药物输送体系的重要组成部分,可嵌入磷脂双分子层,调节磷脂膜的稳定性。

随着现代人健康生活意识的不断提高,胆固醇的应用对于一些高血脂人群受到限制,为此学界开始植物甾醇取代胆固醇制备脂质体的研究。

Marie等[3]发现植物甾醇可以降低大豆磷脂膜的通透性;杨贝贝[4]的研究也表明混合植物甾醇对脂质体形成、膜的稳定性、包埋力作用比胆固醇要大。

且植物甾醇在人体内吸收率较低[5],过量摄入也不会对人体造成危害,已被证实是一种绿色安全的降胆固醇药物,其取代胆固醇制备脂质体是国内外研究热点。

脂质体是由磷脂分散在水中形成的封闭囊泡结构,是优良的药物运输载体,可用于包埋亲水性和疏水性活性成分,具有靶向、缓释、降低毒性和提高药物稳定性等作用。

但其自身稳定性易受外界环

收稿日期:

2017-12-18

作者简介:

程铭,男,1993年出生,硕士,食品资源开发与利用

通信作者:

王春维,男,1958年出生,教授,粮油、食品、饲料资源开发

境如pH、温度、离子强度等影响。

壳聚糖是一种天然的高分子生物材料,其在酸性溶液中呈现阳离子性质,可通过静电相互作用与带负电的脂质体结合,在脂质体表面形成一层保护膜;此外疏水相互作用、氢键、范德华力等多种相互作用力的存在使壳聚糖修饰脂质体的结构变得更加丰富而复杂[6]。

刘玮琳等[7]发现以壳聚糖修饰的脂质体比未修饰的脂质体稳定,且高浓度壳聚糖修饰脂质体稳定性更好。

帅武平等[8]考察了不同相对分子量的壳聚糖对脂质体性质的影响,得到较高相对分子质量壳聚糖修饰的脂质体具有更好的稳定性和抗血清能力,同时其细胞毒性要小于阳离子脂质体。

严佳蕾等[9]研究了不同浓度壳聚糖修饰脂质体对包载姜黄素的效果,发现0.4%的壳聚糖对姜黄素脂质体保护效果最佳。

壳聚糖修饰脂质体对于提高体系稳定性,降低药物的泄漏率具有重要意义,但目前对植物甾醇脂质体的研究较少,壳聚糖修饰植物甾醇脂质体的研究亦未见报道。

本实验首先通过乙醇注入法制备植物甾醇脂质体,并以不同浓度壳聚糖对其进行修饰、优化配比。

考察了pH、温度、离子强度等对CS-PLs稳定性的影响,并通过模拟人体胃肠环境探究了脂质体的消化稳定性。

1材料与方法

1.1材料与试剂

植物甾醇(>95%):

武汉远成共创科技有限公司;大豆卵磷脂(70%)、壳聚糖(脱乙酰度≥95%):

aladdin试剂公司;胃蛋白酶、胰酶:

Sigma-Aldrich公司;无水乙醇、盐酸、氢氧化钠、胆盐等试剂均为分析纯:

国药集团化学试剂有限公司。

1.2仪器与设备

AL204分析天平:

上海梅特勒-托利多仪器有限公司;DF-101S集热式恒温加热磁力搅拌器:

巩义市予华仪器有限责任公司;T18高速分散机:

IKA公司;R-3旋转蒸发仪:

瑞士Buchi公司;pH计:

上海奥豪斯仪器有限公司;Nano-ZS粒度仪:

英国Malvern公司;TurbiscanLab稳定性分析仪:

法国Formulaction公司;JEM-2100透射电镜:

日本电子株式会社。

1.3方法

1.3.1CS-PLs的制备

1.3.1.1PLs的制备

采用乙醇注入法[10]制备PLs,将大豆卵磷脂与植物甾醇按4:

1的比例溶于无水乙醇中,使磷脂浓度为40mg/mL,超声溶解。

在高速分散(10000r/min)条件下,按有机相与水相比例为1:

5,将卵磷脂植物甾醇混合液缓慢注入水中,继续分散2min,旋转蒸发去除乙醇,加水稀释至原水相含量,得到PLs。

1.3.1.2CS-PLs的制备

壳聚糖溶液的制备:

称取0.2g壳聚糖粉末溶于100mL1%乙酸水溶液中,40℃水浴搅拌溶解,过滤除去不溶物,置于4℃冰箱中水化过夜,取出后稀释备用。

分别将PLs加入等体积不同浓度的壳聚糖溶液中,调节pH至3.5,在10000r/min下高速分散2min,得到CS-PLs。

1.3.2CS-PLs理化性质表征

1.3.2.1粒径与Zata电位测定

样品用去离子水稀释至一定浓度后,采用动态光散射技术测定植物甾醇脂质体平均粒径、多分散系数(Polydispersityindex,PdI)和Zeta电位。

1.3.2.2CS-PLs稳定性分析

采用多重光散射技术(扫描波长880nm),分析不同环境下脂质体的稳定性。

将制备好的样品振荡摇匀,倒入样品池中,测定脂质体的稳定性指数TSI(TurbiscanStabilityIndex)。

测试样品加入量为15~20mL,测定温度为25℃,测定时间为1h,扫描间隔为25s。

1.3.2.3CS-PLs形态观察

取制备好的CS-PLs样品1mL,用去离子水稀释至磷脂浓度为0.8mg/mL,滴至专用铜网上,滤纸吸干多余脂质体;用3%磷钨酸进行负染色,并用滤纸轻轻吸干多余染液,自然挥干,透射电镜下观察脂质体微观结构。

1.3.3CS-PLs体外消化稳定性

1.3.3.1消化液配制

参照Liu等[11]报道的模拟胃肠消化液的配制方法并加以改进。

胃液储备液(Simulatedgastricfluid,SGF)的配制:

取2gNaCl溶于800mL去离子水中,用0.1mol/LHCl调节其pH至2.0,定容至1L,4℃储藏备用。

肠液储备液(Simulatedintestinalfluid,SIF)的配制:

取6.8gKH2PO4溶于800mL去离子水中,用0.1mol/LNaOH调节pH至7.0,定容至1L,4℃储藏备用。

胃蛋白酶和胰酶分别用胃肠储备液溶解,3000r/min离心取上清液。

1.3.3.2体外模拟胃肠消化

胃消化:

将10mL脂质体与9mLSGF混合于50mL离心管,调节pH至2.0,在37℃恒温水浴摇床上,以95r/min转速平衡10min,加入1mL胃蛋白酶(80mg/mL),开始消化。

肠消化:

将胆盐溶于SIF(20mg/mL)中,搅拌溶解。

取10mL脂质体与9mlSIF胆盐混合液于50mL调节pH至7.0,在37℃恒温水浴摇床上,以95r/min转速平衡10min,加入1mL胰酶(160mg/mL),开始消化。

分别在15、30、60、120、180min取样测定消化后脂质体粒径、电位大小。

2结果与分析

2.1不同浓度壳聚糖修饰PLs的制备

以不同浓度的壳聚糖溶液修饰PLs,所得CS-PLs中壳聚糖浓度分别为0、0.1、0.2、0.3、0.4、0.6、0.8mg/mL。

如表1所示,当pH为3.5时,低浓度的壳聚糖对脂质体粒径和PdI影响较小;当壳聚糖浓度达到0.3mg/mL以上时,脂质体中会出现较大颗粒,且多分散性变差。

未添加壳聚糖脂质体粒径较小,由于磷脂带负电,脂质体也呈负电位。

而壳聚糖表面带正电荷,随着壳聚糖的加入,壳聚糖吸附在磷脂膜上,使脂质体电位由负转正,且壳聚糖浓度越高,脂质体电位越大。

当壳聚糖浓度达到0.3mg/mL时,壳聚糖吸附达到饱和,继续提高壳聚糖浓度会增加脂质体修饰层厚度,导致粒径增加,而电位变化不显著。

因此,选择0.3mg/mL壳聚糖为最佳浓度修饰PLs,分析CS-PLs的稳定性影响因素。

表1不同浓度壳聚糖修饰LPs的平均粒径、PdI和Zeta电位

壳聚糖浓度/mg/mL

平均粒径/nm

PdI

Zeta电位/mv

0

77.63±4.34

0.281±0.007

-33.5±0.9

0.1

75.67±0.69

0.226±0.012

40.5±2.06

0.2

73.85±0.95

0.242±0.009

51.4±1.23

0.3

76.76±0.24

0.24±0.018

60.5±1.03

0.4

80.17±6.79

0.363±0.017

62.3±0.59

0.6

95.25±1.55

0.402±0.02

65.9±1.16

0.8

103.55±3.19

0.435±0.007

67±1.78

由图1可知,通过激光粒度仪测定乙醇注入法制备的PLs粒径为70.4nm,PdI为0.377,粒径分布范围广,并有较多大颗粒存在。

经0.3mg/mL壳聚糖修饰后,脂质体粒径虽有所增加,达到76.73nm,但PdI降低到0.246,且粒径分布更集中,大颗粒较少。

CS-PLs的透射电镜测定结果如图2,脂质体呈规则圆球状,粒径为60~70nm,较激光粒度仪测定结果偏小,这可能是由于透射电镜样品制片时脱水而引起[12]。

图1壳聚糖修饰前后LPs粒径分布

图2CS-PLs透射电镜图

2.2CS-PLs稳定性影响因素

电位是评定脂质体稳定性的重要指标之一,脂质体表面所带电荷越高,颗粒间静电斥力越大,脂质体越稳定。

除此之外空间位阻、颗粒尺寸和流变性等也常用于评价脂质体的稳定性。

稳定性分析仪通过检测样品在静置过程中粒子的迁移,可较真实地反应脂质体的稳定性变化;TSI越小,反应乳液体系越稳定。

杭锋等[13]通过测定不同温度下超高温灭菌乳的TSI,构建了乳品货架期加速试验数学模型,并预测了超高温灭菌乳的货架期。

黄波等[14]以TSI为指标,优化了微乳液超声条件。

本文以脂质体的粒径、电位为主要指标,并通过测定其TSI值,综合评价了脂质体在不同环境下的稳定性。

2.2.1pH对CS-PLs稳定性影响

新鲜制备的PLs,加入壳聚糖后,分别调节pH至2.0、3.0、4.0、5.0、6.0、7.0,经高速分散后,测定CS-PLs稳定性。

用相应pH的去离子水稀释脂质体,测定其粒径与电位。

图3pH对CS-PLs稳定性指数影响

表2pH对CS-PLs稳定性影响

pH

平均粒径/nm

PdI

Zeta电位/mv

物理稳定性

2.0

78.18±1.76

0.271±0.021

43.6±1.27

稳定

3.0

78.35±0.43

0.252±0.005

60.4±0.44

稳定

4.0

85.96±1.06

0.293±0.022

57.7±1.76

稳定

5.0

133.87±3.78

0.893±0.029

39.9±0.87

稳定

6.0

3193.67±419.00

0.869±0.163

23.8±0.50

分层

7.0

2709.63±1586.83

0.964±0.062

15.2±0.31

分层

如表2所示,当pH为2~4时,CS-PLs粒径均在100nm以下,并表现出良好的分散性;当pH≥5时,CS-PLs粒径开始增大,且多分散性也开始变差。

由图3可知,随着pH增大,CS-PLs稳定性反而增强,当pH达到6时,CS-PLs大量聚集,出现沉淀,其TSI均在10以上。

与Sonvico[15]的研究结果相似,即当pH从2.5增加到5时,卵磷脂-壳聚糖纳米粒的粒径和电位变化较小,当pH大于5时,纳米粒电位显著下降,且出现聚集。

Liu[16]等以卵磷脂-壳聚糖纳米粒包载胰岛素,发现当pH由2增加到5.5时,纳米粒粒径和胰岛素包埋率逐渐增加,当pH为6时则出现沉淀。

分析其主要原因可能是由于壳聚糖的等电点为6.5左右,当pH接近6时,CS-PLs表面弱的静电相互作用不足以维持结构稳定,颗粒开始聚集,并出现沉淀。

2.2.2温度对CS-PLs稳定性影响

新鲜制备的CS-PLs,用稳定性分析仪分别在25、30、40、50、60℃下测定稳定性,每个样品扫描时间为12h,扫描间隔10min,取出样品后测定脂质体粒径与电位。

图4温度对CS-PLs稳定性指数影响

表3温度对脂质体稳定性影响

温度/℃

平均粒径/nm

PdI

Zeta电位/mv

物理稳定性

25

76.41±1.01

0.248±0.005

68.3±1.46

稳定

30

81.64±0.12

0.283±0.024

58.5±0.99

稳定

40

87.12±2.02

0.343±0.003

64.7±1.60

稳定

50

90.60±0.62

0.355±0.016

60.8±1.50

稳定

60

97.49±1.33

0.36±0.005

62.6±3.02

稳定

温度是影响脂质体稳定性的重要因素之一。

如表3所示,随着温度的升高,CS-PLs粒径逐渐增大,多分散性变差,但其电位、外观无显著变化。

由图4可见,在常温环境下,CS-PLs的TSI仍在1以下,稳定性良好;经加热后,CS-PLs的TSI迅速上升,其主要是由于在加热条件下,脂质体分子运动更加剧烈,加速了磷脂分子层的水解与氧化,结构破坏[17]。

而约2h后,TSI又呈现缓慢下降趋势,其可能是壳聚糖充分溶胀,重新自组装成稳定颗粒,提高了CS-PLs稳定性。

2.2.3离子强度对CS-PLs稳定性影响

新鲜制备的CS-PLs,分别加入10、25、50、100、150、200mmol/L的NaCl和CaCl2,调节脂质体的离子强度,37℃水浴搅拌10min,通过稳定分析仪测定脂质体的稳定性。

并分别用对应浓度的NaCl和CaCl2溶液稀释脂质体,测定其粒径和电位。

图5NaCl浓度对CS-PLs稳定性指数影响

表4NaCl浓度对CS-PLs稳定性影响

NaCl浓度/mmol/L

平均粒径/nm

PdI

Zeta电位/mv

物理稳定性

10

87.14±0.52

0.307±0.03

41.2±0.98

稳定

25

197.55±7.69

0.578±0.02

37.9±1.93

分层

50

1358.67±59.97

0.608±0.15

29.6±0.55

分层

100

1361.67±245.49

0.720±0.49

24.5±0.78

分层

150

1241.03±440.11

0.677±0.06

20.2±0.80

分层

200

1786.24±841.12

0.964±0.062

19.0±0.87

分层

如表4所示,NaCl浓度对CS-PLs稳定性有显著影响,当浓度为10mmol/L时,脂质体粒径为87.14nm,多分散性较好;随着NaCl浓度的加大,盐离子的存在会屏蔽脂质体表面电荷,使脂质体电位逐渐降低,粒径显著增大,稳定性变差。

曹金娜[18]等也发现当NaCl浓度大于20mmol/L时,脂质体稳定性较差。

如图5所示,稳定性分析也表现出相似结果。

对于阴离子脂质体,Ca2+可以在脂质体之间形成“盐桥",增加磷脂膜疏水性,导致脂质体的失稳[19]。

经壳聚糖修饰后,CS-PLs表面带正电荷,加入Ca2+并未引起脂质体的聚集。

如表5所示,CS-PLs对CaCl2表现出较好的耐受性,即使在200mmol/LCaCl2的环境下也能维持稳定。

盐离子的存在也会影响脂质体表面电荷,随着离子强度的增加,脂质体电位逐渐降低。

如图6所示,稳定性分析显示,不同离子强度下,CS-PLs的TSI均在1以下,当CaCl2浓度为100mmol/L时,脂质体的TSI最小为0.4,比未添加Ca2+的脂质体表现出更好的稳定性,其可能原因是由于金属离子的作用使酰基链的排列更加紧密,降低了磷脂膜的流动性,从而提高CS-PLs稳定性[20]。

图,6CaCl2浓度对CS-PLs稳定性指数影响

表5CaCl2浓度对脂质体稳定性影响

CaCl2浓度/mmol/L

平均粒径/nm

PdI

Zeta电位/mv

物理稳定性

10

106.83±13.76

0.373±0.06

38.07±2.29

稳定

25

100.10±10.96

0.440±0.08

25.57±0.74

稳定

50

92.07±9.93

0.376±0.06

22.10±2.42

稳定

100

102.63±17.46

0.380±0.13

19.43±0.68

稳定

150

102.17±4.10

0.493±0.09

18.40±1.25

稳定

200

116.81±27.91

0.398±0.04

17.37±1.55

稳定

2.3CS-PLs体外消化稳定性

由图7可知,在模拟胃环境中,PLs与CS-PLs随着消化时间的延长,粒径均略有增加,经3h消化后,其平均粒径大小均能维持在120nm以下,说明两种脂质体在酸性环境均能保持良好的稳定性。

由于加入的胃蛋白酶对脂质体没有影响,故测得模拟胃液中两种脂质体在不同消化时间段电位无显著差别。

在强酸性环境下,PLs所带负电荷被中和,电位增加为-10mv左右,而CS-LS自身带正电荷,大量H+的存在屏蔽了壳聚糖表面所带电荷,电位下降到30mv。

图7模拟胃消化环境下脂质体粒径、电位变化

图8模拟肠消化环境下脂质体粒径、电位变化

在模拟肠液中,因加入的胰酶中含有一定量的胰脂肪酶,可水解脂质体中的磷脂,破坏了脂质体的结构。

如图8所示,PLs在模拟肠液中,粒径先增大,然后逐渐降低,磷脂分子层的破坏造成脂质体粒径增大,而肠液中含有大量胆盐,在37℃条件下,大的颗粒会重新自组装成微胶束,粒径减小。

Liu[21]等以大豆磷脂和牛奶磷脂制备脂质体,在体外肠消化过程中也得到了相似的结果。

PLs经壳聚糖修饰后,脂质体表面包裹了一层保护壳,降低了脂质体与胰脂肪酶的接触机会,从而可有效减轻脂质体的破坏程度[22]。

由上述结果可知,CS-PLs在中性环境中稳定性较差,在模拟肠液环境中会形成沉淀物,但消化15min后,混合物粒径也逐渐降低,且较PLs具有更小的粒径。

3结论

本研究通过粒径、电位等的测定,确定了壳聚糖修饰PLs的最佳浓度为0.3mg/mL;且发现pH、温度、盐粒子种类及其浓度均对CS-PLs稳定性影响较大;所以选择适宜的制备工艺和储藏条件对维持脂质体稳定具有重要意义。

在模拟胃环境中壳聚糖修饰前后PLs均表现出良好的稳定性,而模拟肠环境中,经修饰后的PLs粒径更小更稳定。

本研究对CS-PLs在不同条件下的稳定性进行了探讨,为CS-PLs的进一步研究和应用提供一些理论依据。

参考文献

[1]寇明钰,阚健全,赵国华,等.植物甾醇来源、提取、分析技术及其食品开发[J].粮食与油脂,2004,(8):

9-13

KouMingyu,KanJianquan,ZhaoGuohua,etal.TheSources,ExtractionandAnalyticMethodsofPhytosterolanditsFoodDevelopment[J].CerealsandOil,2004,(8):

9-13.

[2]JrOR.Phytosterolsinhumannutrition[J].AnnualReviewofNutrition,2013,2

(2):

533

[3]Krajewski-BertrandMA,MilonA,HartmannMA.Deuterium-NMRinvestigationofplantsteroleffectsonsoybeanphosphatidylchol

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 判决书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1