高中数学必修一至必修五知识点总结完整版.docx

上传人:b****8 文档编号:24015194 上传时间:2023-05-23 格式:DOCX 页数:63 大小:51.31KB
下载 相关 举报
高中数学必修一至必修五知识点总结完整版.docx_第1页
第1页 / 共63页
高中数学必修一至必修五知识点总结完整版.docx_第2页
第2页 / 共63页
高中数学必修一至必修五知识点总结完整版.docx_第3页
第3页 / 共63页
高中数学必修一至必修五知识点总结完整版.docx_第4页
第4页 / 共63页
高中数学必修一至必修五知识点总结完整版.docx_第5页
第5页 / 共63页
点击查看更多>>
下载资源
资源描述

高中数学必修一至必修五知识点总结完整版.docx

《高中数学必修一至必修五知识点总结完整版.docx》由会员分享,可在线阅读,更多相关《高中数学必修一至必修五知识点总结完整版.docx(63页珍藏版)》请在冰豆网上搜索。

高中数学必修一至必修五知识点总结完整版.docx

高中数学必修一至必修五知识点总结完整版

高中数学必修1知识点总结

第一章集合与函数概念

一、集合有关概念

1、集合的含义:

某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性;2.元素的互异性;3.元素的无序性

说明:

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:

{„}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:

A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:

列举法与描述法。

非负整数集(即自然数集)记作:

N

正整数集N*或N+整数集Z有理数集Q实数集R关于”属于”的概念

集合的元素通常用小写的拉丁字母表示,如:

a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA

列举法:

把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:

将集合中的元素的公共属性描述出来,写在大括号含有有限个元素的集合

(2).无限集含有无限个元素的集合

(3).空集不含任何元素的集合例:

{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:

有两种可能

(1)A是B的一部分,;

(2)A与B是同一集合。

反之:

集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系(5≥5,且5≤5,则5=5)

-1-

实例:

设A={x|x2-1=0}B={-1,1}“元素相同”

结论:

对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:

A=B

任何一个集合是它本身的子集。

AA

②真子集:

如果AB,且BA那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC

④如果AB同时BA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:

空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:

一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:

一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

记作:

A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:

A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

4、全集与补集

(1)补集:

设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

(2)全集:

如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。

通常用U来表示。

四、函数的有关概念

1.函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:

A→B为从集合A到集合B的一个函数.记作:

y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:

如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数

-2-

不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:

求出不等式组的解集即为函数的定义域。

构成函数的三要素:

定义域、对应关系和值域

注意:

(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:

①表达式相同;②定义域一致(两点必须同时具备)(见课本21页相关例2)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.

(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3.函数图象知识归纳

(1)定义:

在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.集合C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A},图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2)画法

A、描点法:

根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。

提高解题的速度。

发现解题中的错误。

4.了解区间的概念

(1)区间的分类:

开区间、闭区间、半开半闭区间;

(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,

-3-

那么就称对应f:

A→B为从集合A到集合B的一个映射。

记作“f:

A→B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:

函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:

A→B来说,则应满足:

(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:

1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2解析法:

必须注明函数的定义域;3图象法:

描点法作图要注意:

确定函数的定义域;化简函数的解析式;观察函数的特征;4列表法:

选取的自变量要有代表性,应能反映定义域的特征.解析法:

便于算出函数值。

列表法:

便于查出函数值。

图象法:

便于量出函数值.

补充一:

分段函数(参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。

在不同的范围里求函数值时必须把自变量代入相应的表达式。

分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.

(1)分段函数是一个函数,不要把它误认为是几个函数;

(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:

复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。

例如:

y=2sinxy=2cos(2x+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量a,b,当a<b时,都有f(a)<f(b),那么就说f(x)在区间D上是增函数。

区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)

如果对于区间D上的任意两个自变量的值a,b,当a<b时,都有f(a)>f(b),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:

1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2必须是对于区间D内的任意两个自变量a,b;当a<b时,总有f(a)<f(b)。

(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

-4-

(A)定义法:

任取a,b∈D,且a<b;2作差f(a)-f(b);3变形(通常是因式分解和配方);4定号(即判断差f(a)-f(b)的正负);5下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关

注意:

1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域

(2)、利

-5-

用图象求函数的最大(小)值(3)、利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第二章基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:

一般地,如果xna,那么x叫做a的n次方根(nthroot),其中n>1,且n∈N*.

当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,a的n次方根用符号a表示.式子a叫做根式(radical),这里n叫做根指数(radicalexponent),a叫做被开方数(radicand).

当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a的正的n次方根用符号a表示,负的n次方根用符号-a表示.正的n次方根与负的n次方根可以合并成±a(a>0).由此可得:

负数没有偶次方根;0的任何次方根都是0,记作00。

注意:

当n是奇数时,aa,当n是偶数时,a

2.分数指数幂

正数的分数指数幂的意义,规定:

mnn(a0)a|a|a(a0)

ana(a0,m,nN,n1),am*m

n1

m1anam(a0,m,nN,n1)*

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:

规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(1)ar·aa

rrrrs

(2)(a0,r,sR);(a)arsrs(a0,r,sR);(3)(a0,r,sR).

(二)指数函数及其性质

1、指数函数的概念:

一般地,函数yax(a0,且a1)叫做指数函数(exponentialfunction),其中x是自变量,函数的定义域为R.注意:

指数函数的底数的取值范围,底数不能是负数、零和1.

 

(ab)aas

-6-

 

(1)在[a,b]上,f(x)ax(a0且a1)值域是[f(a),f(b)]或[f(b),f(a)];

(2)若x0,则f(x)1;f(x)取遍所有正数当且仅当xR;

(3)对于指数函数f(x)ax(a0且a1),总有f

(1)a;(4)当a1时,若x1x2,则f(x1)f(x2);二、对数函数

(一)对数

1.对数的概念:

一般地,如果axN(a0,a1),那么数x叫做以.a为.底.N的对数,记作:

xlogaN(a—底数,N—真数,logaN—对数式)

1注意底数的限制a0,且a1;说明:

2axNlogaNx;○

3注意对数的书写格式.○

两个重要对数:

1常用对数:

以10为底的对数○

2自然对数:

以无理数e2.71828为底的对数的对数lnN.○

对数式与指数式的互化

x

logaNxaN

对数式

指数式

-7-

 

对数底数←a→幂底数对数←x→指数真数←N→幂

(二)对数的运算性质

如果a0,且a1,M0,N0,那么:

(1)loga(M·N)logaM+logaN;

(2)log

(nR).

M

a

N

log

a

M

-logaN;(3)logaM

n

nlog

a

M

注意:

换底公式logab

loglog

cc

ba

(a0,且a1;c0,且c1;b0).

m

利用换底公式推导下面的结论

(1)log

a

b

n

nm

log

a

b

(2)logab

1log

b

a

(二)对数函数

1、对数函数的概念:

函数ylogax(a0,且a1)叫做对数函数,其中

.x是自变量,函数的定义域是(0,+∞)

1对数函数的定义与指数函数类似,都是形式定义,注意辨别。

注意:

如:

y2log2x,ylog

x

5

5

都不是对数函数,而只能称其为对数型函数.

2对数函数对底数的限制:

(a0,且a1).

 

-8-

三、幂函数

1、幂函数定义:

一般地,形如yx(aR)的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);

(2)0时,幂函数的图象通过原点,并且在区间[0,)上是增函数.特别地,当1时,幂函数的图象下凸;当01时,幂函数的图象上凸;

(3)0时,幂函数的图象在区间(0,)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于时,图象在x轴上方无限地逼近x轴正半轴.

第三章函数的应用

一、方程的根与函数的零点

1、函数零点的概念:

对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

2、函数零点的意义:

函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。

即:

方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

3、函数零点的求法:

求函数yf(x)的零点:

1(代数法)求方程f(x)0的实数根;○

2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的○

图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数yax2bxc(a0).

1)△>0,方程ax2bxc0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

2)△=0,方程ax2bxc0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程ax2bxc0无实根,二次函数的图象与x轴无交点,二次函数无零点.

-9-

 

高中数学必修二知识点

一、直线与方程

(1)直线的倾斜角

定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:

倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

当时,;当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:

直线斜率k,且过点

注意:

当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:

,直线斜率为k,直线在y轴上的截距为b

③两点式:

()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:

(A,B不全为0)

注意:

各式的适用范围特殊的方程如:

平行于x轴的直线:

(b为常数);平行于y轴的直线:

(a为常数);

(5)直线系方程:

即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:

(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:

(C为常数)

-10-

(三)过定点的直线系

(ⅰ)斜率为k的直线系:

,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中。

(6)两直线平行与垂直

当,时,

注意:

利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点

相交

交点坐标即方程组的一组解。

方程组无解;方程组有无数解与重合

(8)两点间距离公式:

设是平面直角坐标系中的两个点,

(9)点到直线距离公式:

一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程

1、圆的定义:

平面当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:

先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:

如弦的中垂线必经过原点,以此来确定圆心的位置。

-11-

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:

①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:

圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:

通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,当时,为同心圆。

注意:

已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:

两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:

侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

几何特征:

①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:

以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:

①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

-12-

(5)圆锥:

定义:

以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:

①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:

以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:

①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:

以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:

①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:

正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:

正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:

V=;S=

4、空间点、直线、平面的位置关系

公理1:

如果一条直线的两点在一个平面应用:

判断直线是否在平面内

用符号语言表示公理1:

公理2:

如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

-13-

符号:

平面α和β相交,交线是a,记作α∩β=a。

符号语言:

公理2的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:

交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:

经过不在同一条直线上的三点,有且只有一个平面。

推论:

一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:

①它是空间②它是证明平面重合的依据公理4:

平行于同一条直线的两条直线互相平行

空间直线与直线之间的位置关系

①异面直线定义:

不同在任何一个平面B、证明作出的角即为所求角C、利用三角形来求角

(7)等角定理:

如果一个角的两边和另一

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1