计算机组装与维护技术名词新解 主板.docx

上传人:b****8 文档编号:23993925 上传时间:2023-05-23 格式:DOCX 页数:24 大小:40.09KB
下载 相关 举报
计算机组装与维护技术名词新解 主板.docx_第1页
第1页 / 共24页
计算机组装与维护技术名词新解 主板.docx_第2页
第2页 / 共24页
计算机组装与维护技术名词新解 主板.docx_第3页
第3页 / 共24页
计算机组装与维护技术名词新解 主板.docx_第4页
第4页 / 共24页
计算机组装与维护技术名词新解 主板.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

计算机组装与维护技术名词新解 主板.docx

《计算机组装与维护技术名词新解 主板.docx》由会员分享,可在线阅读,更多相关《计算机组装与维护技术名词新解 主板.docx(24页珍藏版)》请在冰豆网上搜索。

计算机组装与维护技术名词新解 主板.docx

计算机组装与维护技术名词新解主板

主板

 

北桥芯片:

北桥芯片(NorthBridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(HostBridge)。

一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔845E芯片组的北桥芯片是82845E,875P芯片组的北桥芯片是82875P等等。

北桥芯片负责与CPU的联系并控制内存、AGP、PCI数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDRSDRAM以及RDRAM等等)和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。

北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。

因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。

因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。

北桥芯片同时还通过特定的数据通道和南桥芯片相连接。

北桥芯片的封装模式最初使用BGA封装模式,到现在Intel的北桥芯片已经转变为FC-PGA封装模式,不过为AMD处理器设计的主板北桥芯片到现在依然还使用传统的BGA封装模式。

 

南桥芯片:

南桥芯片(SouthBridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。

相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。

南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔HubArchitecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。

南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。

所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。

例如早期英特尔不同架构的芯片组Socket7的430TX和Slot1的440LX其南桥芯片都采用82317AB,而近两年的芯片组系列芯片组都采用ICH7或者ICH7R南桥芯片,但也能搭配ICH6南桥芯片。

更有甚者,有些主板厂家生产的少数产品采用的南北桥是不同芯片组公司的产品。

例如以前升技的KG7-RAID主板,北桥采用了AMD760,南桥则是VIA686B。

不同的南桥芯片可以搭配不同的北桥芯片,虽然其中存在一定的对应关系,但是只要连接总线相符并且针脚兼容,主板厂商完全可以随意选择。

南桥芯片的发展方向主要是集成更多的功能,例如网卡、RAID、IEEE1394、甚至WI-FI无线网络等等。

 

CPU插槽类型:

CPU需要通过某个接口与主板连接的才能进行工作。

CPU经过这么多年的发展,采用的接口方式有引脚式、卡式、触点式、针脚式等。

而目前CPU的接口都是针脚式接口,对应到主板上就有相应的插槽类型。

不同类型的CPU具有不同的CPU插槽,因此选择CPU,就必须选择带有与之对应插槽类型的主板。

主板CPU插槽类型不同,在插孔数、体积、形状都有变化,所以不能互相接插。

 

内存插槽:

内存插槽是指主板上所采用的内存插槽类型和数量。

主板所支持的内存种类和容量都由内存插槽来决定的。

目前主要应用于主板上的内存插槽有:

SIMM(SingleInlineMemoryModule,单内联内存模块)

内存条通过金手指与主板连接,内存条正反两面都带有金手指。

金手指可以在两面提供不同的信号,也可以提供相同的信号。

SIMM就是一种两侧金手指都提供相同信号的内存结构,它多用于早期的FPM和EDDDRAM,最初一次只能传输8bif数据,后来逐渐发展出16bit、32bit的SIMM模组,其中8bit和16bitSIMM使用30pin接口,32bit的则使用72pin接口。

在内存发展进入SDRAM时代后,SIMM逐渐被DIMM技术取代。

DIMM

DIMM与SIMM相当类似,不同的只是DIMM的金手指两端不像SIMM那样是互通的,它们各自独立传输信号,因此可以满足更多数据信号的传送需要。

同样采用DIMM,SDRAM的接口与DDR内存的接口也略有不同,SDRAMDIMM为168PinDIMM结构,金手指每面为84Pin,金手指上有两个卡口,用来避免插入插槽时,错误将内存反向插入而导致烧毁;DDRDIMM则采用184PinDIMM结构,金手指每面有92Pin,金手指上只有一个卡口。

卡口数量的不同,是二者最为明显的区别。

DDR2DIMM为240pinDIMM结构,金手指每面有120Pin,与DDRDIMM一样金手指上也只有一个卡口,但是卡口的位置与DDRDIMM稍微有一些不同,因此DDR内存是插不进DDR2DIMM的,同理DDR2内存也是插不进DDRDIMM的,因此在一些同时具有DDRDIMM和DDR2DIMM的主板上,不会出现将内存插错插槽的问题。

RIMM

RIMM是Rambus公司生产的RDRAM内存所采用的接口类型,RIMM内存与DIMM的外型尺寸差不多,金手指同样也是双面的。

RIMM有也184Pin的针脚,在金手指的中间部分有两个靠的很近的卡口。

RIMM非ECC版有16位数据宽度,ECC版则都是18位宽。

由于RDRAM内存较高的价格,此类内存在DIY市场很少见到,RIMM接口也就难得一见了。

 

集成芯片

集成芯片是指主板所整合的显卡、声卡或者网卡等一些设备。

 

集成显卡:

集成显卡是指芯片组内集成显示芯片,使用这种芯片组的主板可以在不需要独立显卡的情况下实现普通的显示功能,以满足一般的家庭娱乐和商业应用,节省用户购买显卡的开支。

集成的显卡不带有显存,使用系统的一部分主内存作为显存,具体的数量一般是系统根据需要自动动态调整的。

显然,如果使用集成显卡运行需要大量占用显存的程序,对整个系统的影响会比较明显,此外系统内存的频率通常比独立显卡的显存低很多,因此集成显卡的性能比独立显卡差很多。

 

主板网卡芯片:

是指整合了网络功能的主板所集成的网卡芯片,与之相对应,在主板的背板上也有相应的网卡接口(RJ-45),该接口一般位于音频接口或USB接口附近。

以前由于宽带上网很少,大多都是拨号上网,网卡并非电脑的必备配件,板载网卡芯片的主板很少,如果要使用网卡就只能采取扩展卡的方式;而现在随着宽带上网的流行,网卡逐渐成为电脑的基本配件之一,板载网卡芯片的主板也越来越多了。

在使用相同网卡芯片的情况下,板载网卡与独立网卡在性能上没有什么差异,而且相对与独立网卡,板载网卡也具有独特的优势。

首先是降低了用户的采购成本,例如现在板载千兆网卡的主板越来越多,而购买一块独立的千兆网卡却需要好几百元;其次,可以节约系统扩展资源,不占用独立网卡需要占用的PCI插槽或USB接口等;再次,能够实现良好的兼容性和稳定性,不容易出现独立网卡与主板兼容不好或与其它设备资源冲突的问题。

板载网卡芯片以速度来分可分为10/100Mbps自适应网卡和千兆网卡,以网络连接方式来分可分为普通网卡和无线网卡,以芯片类型来分可分为芯片组内置的网卡芯片(某些芯片组的南桥芯片,如SIS963)和主板所附加的独立网卡芯片(如Realtek8139系列)。

部分高档家用主板、服务器主板还提供了双板载网卡。

 

主板结构:

由于主板是电脑中各种设备的连接载体,而这些设备的各不相同的,而且主板本身也有芯片组,各种I/O控制芯片,扩展插槽,扩展接口,电源插座等元器件,因此制定一个标准以协调各种设备的关系是必须的。

所谓主板结构就是根据主板上各元器件的布局排列方式,尺寸大小,形状,所使用的电源规格等制定出的通用标准,所有主板厂商都必须遵循。

主板结构分为AT、Baby-AT、ATX、MicroATX、LPX、NLX、FlexATX、EATX、WATX以及BTX等结构。

其中,AT和Baby-AT是多年前的老主板结构,现在已经淘汰;而LPX、NLX、FlexATX则是ATX的变种,多见于国外的品牌机,国内尚不多见;EATX和WATX则多用于服务器/工作站主板;ATX是目前市场上最常见的主板结构,扩展插槽较多,PCI插槽数量在4-6个,大多数主板都采用此结构;MicroATX又称MiniATX,是ATX结构的简化版,就是常说的“小板”,扩展插槽较少,PCI插槽数量在3个或3个以下,多用于品牌机并配备小型机箱;而BTX则是英特尔制定的最新一代主板结构。

 

AT主板:

在PC推出后的第三年即1984年,IBM公布了PCAT。

AT主板的尺寸为13"×12",板上集成有控制芯片和8个I/0扩充插槽。

由于AT主板尺寸较大,因此系统单元(机箱)水平方向增加了2英寸,高度增加了1英寸,这一改变也是为了支持新的较大尺寸的AT格式适配卡。

将8位数据、20位地址的XT扩展槽改变到16位数据、24位地址的AT扩展槽。

为了保持向下兼容,它保留62脚的XT扩展槽,然后在同列增加36脚的扩展槽。

XT扩展卡仍使用62脚扩展槽(每侧31脚),AT扩展卡使用共98脚的的两个同列扩展槽。

这种PCAT总线结构演变策略使得它仍能在当今的任何一个PCPentium/PCI系统上正常运行。

PCAT的初始设计是让扩展总线以微处理器相同的时钟速率来运行,即6MHz的286,总线也是6MHz;8MHz的微处理器,则总线就是8MHz。

随着微处理器速度的增加,增加扩展总线的速度也很简单。

后来一些PCAT系统的扩展总线速度达到了10和12MHz。

不幸的是,某些适配器不能以这样的速度工作或者能很好得工作。

因此,绝大多数的PCAT仍以8或8.33MHz为扩展总线的速率,在此速度下绝大多数适配器都不能稳定工作。

 

BabyAT主板:

AT主板尺寸较大,板上能放置较多的元件和扩充插槽。

但随着电子元件集成化程度的提高,相同功能的主板不再需要全AT的尺寸。

因此在1990年推出了Baby/MiniAT主板规范,简称为BabyAT主板。

BabyAT主板是从最早的XT主板继承来的,它的大小为15"×8.5",比AT主板是略长,而宽度大大窄于AT主板。

BabyAT主板沿袭了AT主板的I/0扩展插槽、键盘插座等外设接口及元件的摆放位置,而对内存槽等内部元件结构进行了紧缩,再加上大规模集成电路使内部元件减少,使得BabyAT主板比AT主板布局紧凑而功能不减。

但随着计算机硬件技术的进一步发展,计算机主板上集成功能越来越多,BabyAT主板有点不负重荷,而AT主板又过于庞大,于是很多主板商又采取另一种折衷的方案,即一方面取消主板上使用较少的零部件以压缩空间(如将I/0扩展槽减为7个甚至6个,另一方面将BabyAT主板适当加宽,增加使用面积,这就形成了众多的规格不一的BabyAT主板。

当然这些主板对基本I/0插槽、外围设备接口及主板固定孔的位置不加改动,使得即使是最小的BabyAT主板也能在标准机箱上使用。

最常见的BabyAT主板尺寸是3/4BabyAT主板(26.5cm×22cm即10.7"×8.7"),采用7个I/0扩展槽。

BabyAT结构标准的首先表现在主板横向宽度太窄(一般为22cm),使得直接从主板引出接口的空间太小。

大大限制了对外接口的数量,这对于功能载来越强、对外接口越来越多的微机来说,是无法克服的缺点。

其次,BabyAT主板上CPU和I/0插槽的位置安排不合理。

早期的CPU由于性能低、功耗小,散热的要求不高。

而今天的CPU性能高、功耗大,为了使其工作稳定,必须要有良好的散热装置,加装散热片或风扇,因而大大增加了CPU的高度。

在AT结构标准里CPU位于扩展槽的下方,使得很多全长的扩展卡插不上去或插上去后阻碍CPU风扇运转。

内存的位置也不尽合理。

早期的计算机内存大小是固定的,对安装位置无特殊要求。

BabyAT主板在结构上按习惯把内存插槽安放在机箱电源的下方,安装、更换内存条往往要拆下电源或主板,很不方便。

内存条散热条件也不好。

此外,由于软硬盘控制器及软硬盘支架没有特定的位置,这造成了软硬盘线缆过长,增加了电脑内部连线的混乱,降低了电脑的中靠性。

甚至由于硬盘线缆过长,使很多高速硬盘的转速受到影响。

 

ATX主板:

由于BabyAT主板市场的不规范和AT主板结构过于陈旧,英特尔在95年1月公布了扩展AT主板结构,即ATX(ATextended)主板标准。

这一标准得到世界主要主板厂商支持,目前已经成为最广泛的工业标准。

97年2月推出了ATX2.01版。

ATX主板针对AT和BabyAT主板的缺点做了以下改进:

主板外形在BabyAT的基础上旋转了90度,其几何尺寸改为30.5cm×24.4cm;采用7个I/O插槽,CPU与I/O插槽、内存插槽位置更加合理;优化了软硬盘驱动器接口位置;提高了主板的兼容性与可扩充性;采用了增强的电源管理,真正实现电脑的软件开/关机和绿色节能功能。

  

 

MicroATX主板:

MicroATX主板保持了ATX标准主板背板上的外设接口位置,与ATX兼容。

  MicroATX主板把扩展插槽减少为3-4只,DIMM插槽为2-3个,从横向减小了主板宽度,其总面积减小约0.92平方英寸,比ATX标准主板结构更为紧凑。

按照MicroATX标准,板上还应该集成图形和音频处理功能。

目前很多品牌机主板使用了MicroATX标准,在DIY市场上也常能见到MicroATX主板。

  

 

BTX主板:

BTX是英特尔提出的新型主板架构BalancedTechnologyExtended的简称,是ATX结构的替代者,这类似于前几年ATX取代AT和BabyAT一样。

革命性的改变是新的BTX规格能够在不牺牲性能的前提下做到最小的体积。

新架构对接口、总线、设备将有新的要求。

重要的是目前所有的杂乱无章,接线凌乱,充满噪音的PC机将很快过时。

当然,新架构仍然提供某种程度的向后兼容,以便实现技术革命的顺利过渡。

BTX具有如下特点:

支持Low-profile,也即窄板设计,系统结构将更加紧凑;针对散热和气流的运动,对主板的线路布局进行了优化设计;主板的安装将更加简便,机械性能也将经过最优化设计。

而且,BTX提供了很好的兼容性。

目前已经有数种BTX的派生版本推出,根据板型宽度的不同分为标准BTX(325.12mm),microBTX(264.16mm)及Low-profile的picoBTX(203.20mm),以及未来针对服务器的ExtendedBTX。

而且,目前流行的新总线和接口,如PCIExpress和串行ATA等,也将在BTX架构主板中得到很好的支持。

值得一提的是,新型BTX主板将通过预装的SRM(支持及保持模块)优化散热系统,特别是对CPU而言。

另外,散热系统在BTX的术语中也被称为热模块。

一般来说,该模块包括散热器和气流通道。

目前已经开发的热模块有两种类型,即full-size及low-profile。

得益于新技术的不断应用,将来的BTX主板还将完全取消传统的串口、并口、PS/2等接口。

 

USB接口:

USB是英文UniversalSerialBUS的缩写,中文含义是“通用串行总线”。

它不是一种新的总线标准,而是应用在PC领域的接口技术。

USB是在1994年底由英特尔、康柏、IBM、Microsoft等多家公司联合提出的。

不过直到近期,它才得到广泛地应用。

从1994年11月11日发表了USBV0.7版本以后,USB版本经历了多年的发展,到现在已经发展为2.0版本,成为目前电脑中的标准扩展接口。

目前主板中主要是采用USB1.1和USB2.0,各USB版本间能很好的兼容。

USB用一个4针插头作为标准插头,采用菊花链形式可以把所有的外设连接起来,最多可以连接127个外部设备,并且不会损失带宽。

USB需要主机硬件、操作系统和外设三个方面的支持才能工作。

目前的主板一般都采用支持USB功能的控制芯片组,主板上也安装有USB接口插座,而且除了背板的插座之外,主板上还预留有USB插针,可以通过连线接到机箱前面作为前置USB接口以方便使用(注意,在接线时要仔细阅读主板说明书并按图连接,千万不可接错而使设备损坏)。

而且USB接口还可以通过专门的USB连机线实现双机互连,并可以通过Hub扩展出更多的接口。

USB具有传输速度快(USB1.1是12Mbps,USB2.0是480Mbps,USB3.0是5Gbps),使用方便,支持热插拔,连接灵活,独立供电等优点,可以连接鼠标、键盘、打印机、扫描仪、摄像头、闪存盘、MP3机、手机、数码相机、移动硬盘、外置光软驱、USB网卡、ADSLModem、CableModem等,几乎所有的外部设备。

USB自从1996年推出后,已成功替代串口和并口,并成为当今个人电脑和大量智能设备的必配的接口之一。

 

USB版本:

 第一代:

USB1.0/1.1的最大传输速率为12Mbps。

1996年推出。

 第二代:

USB2.0的最大传输速率高达480Mbps。

USB1.0/1.1与USB2.0的接口是相互兼容的。

 第三代:

USB3.0最大传输速率5Gbps,向下兼容USB1.0/1.1/2.0。

 

前置USB接口:

前置USB接口是位于机箱前面板上的USB扩展接口。

目前,使用USB接口的各种外部设备越来越多,例如移动硬盘、闪存盘、数码相机等等,但在使用这些设备(特别是经常使用的移动存储设备)时每次都要钻到机箱后面去使用主板板载USB接口显然是不方便的。

前置USB接口在这方面就给用户提供了很好的易用性。

目前,前置USB接口几乎已经成为机箱的标准配置,没有前置USB接口的机箱已经非常少见了。

 前置USB接口要使用机箱所附带的USB连接线连接到主板上所相应的前置USB插针(一般是8针、9针或10针,两个USB成对,其中每个USB使用4针传输信号和供电)上才能使用。

在连接前置USB接口时一定要事先仔细阅读主板说明书和机箱说明书中与其相关的内容,千万不可将连线接错,不然会造成USB设备或主板的损坏。

 另外,使用前置USB接口时要注意前置USB接口供电不足的问题,在使用耗电较大的USB设备时,要使用外接电源或直接使用机箱后部的主板板载USB接口,以避免USB设备不能正常使用或被损坏。

 

USB3.0:

英特尔公司(Intel)和业界领先的公司一起携手组建了USB3.0推广组,旨在开发速度超过当今10倍的超高效USB互联技术。

该技术是由英特尔,以及惠普(HP)、NEC、NXP半导体以及德州仪器(TexasInstruments)等公司共同开发的,应用领域包括个人计算机、消费及移动类产品的快速同步即时传输。

随着数字媒体的日益普及以及传输文件的不断增大——甚至超过25GB,快速同步即时传输已经成为必要的性能需求。

USB3.0具有后向兼容标准,并兼具传统USB技术的易用性和即插即用功能。

该技术的目标是推出比目前连接水平快10倍以上的产品,采用与有线USB相同的架构。

除对USB3.0规格进行优化以实现更低的能耗和更高的协议效率之外,USB3.0的端口和线缆能够实现向后兼容,以及支持未来的光纤传输。

 

 

SATA接口:

SATA是SerialATA的缩写,即串行ATA。

这是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而得名。

SATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。

串行接口还具有结构简单、支持热插拔的优点。

与并行ATA相比,SATA具有比较大的优势。

首先,SerialATA以连续串行的方式传送数据,可以在较少的位宽下使用较高的工作频率来提高数据传输的带宽。

SerialATA一次只会传送1位数据,这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。

实际上,SerialATA仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。

其次,SerialATA的起点更高、发展潜力更大,SerialATA1.0定义的数据传输率可达150MB/sec,这比目前最块的并行ATA(即ATA/133)所能达到133MB/sec的最高数据传输率还高,而目前SATAII的数据传输率则已经高达300MB/sec。

SerialATA规范不仅立足于未来,而且还保留了多种向后兼容方式,在使用上不存在兼容性的问题。

在硬件方面,SerialATA标准中允许使用转换器提供同并行ATA设备的兼容性,转换器能把来自主板的并行ATA信号转换成SerialATA硬盘能够使用的串行信号,目前已经有多种此类转接卡/转接头上市,这在某种程度上保护了我们的原有投资,减小了升级成本;在软件方面,SerialATA和并行ATA保持了软件兼容性,这意味着厂商丝毫也不必为使用SerialATA而重写任何驱动程序和操作系统代码。

另外,SerialATA接线较传统的并行ATA(ParalleATA)接线要简单得多,而且容易收放,对机箱内的气流及散热有明显改善。

而且,SATA硬盘与始终被困在机箱之内的并行ATA不同,扩充性很强,即可以外置,外置式的机柜(JBOD)不单可提供更好的散热及插拔功能,而且更可以多重连接来防止单点故障;由于SATA和光纤通道的设计如出一辙,所以传输速度可用不同的通道来做保证,这在服务器和网络存储上具有重要意义。

SATA硬盘在设置RAID模式时,一般都需要安装主板芯片组厂商所提供的驱动,但也有少数较老的SATARAID控制器在打了最新补丁的某些集成了SATARAID驱动的版本的WindowsXP系统里不需要加载驱动就可以组建RAID。

 

 

SATAII:

SATAII是在SATA的基础上发展起来的,其主要特征是外部传输率从SATA的1.5Gbps(150MB/sec)进一步提高到了3Gbps(300MB/sec),此外还包括NCQ(NativeCommandQueuing,原生命令队列)、端口多路器(PortMultiplier)、交错启动(StaggeredSpin-up)等一系列的技术特征。

单纯的外部传输率达到3Gbps并不是真正的SATAII。

SATAII的关键技术就是3Gbps的外部传输率和NCQ技术。

NCQ技术可以对硬盘的指令执行顺序进行优化,避免像传统硬盘那样机械地按照接收指令的先后顺序移动磁头读写硬盘的不同位置,与此相反,它会在接收命令后对其进行排序,排序后的磁头将以高效率的顺序进行寻址,从而避免磁头反复移动带来的损耗,延长硬盘寿命。

另外并非所有的SATA硬盘都可以使用NCQ技术,除了硬盘本身要支持NCQ之外,也要求主板芯片组的SATA控制器支持NCQ。

此外,NCQ技术不支持FAT文件系统,只支持NTFS文件系统。

 值得注意的是,无论是SATA还是SATAII,其实对硬盘性能的影响都不大。

因为目前硬盘性能的瓶颈集中在由硬盘内部机械机构和硬盘存储技术、磁盘转速所决定的硬盘内部数据传输率上面,就算是目前最顶级的15000转SCSI硬盘其内部数据传输率也不过才80MB/sec左右,更何况普通的7200转桌面级硬盘了。

除非硬盘的数据记录技术产生革命

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 节日庆典

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1