C语言版的线性回归分析函数.docx
《C语言版的线性回归分析函数.docx》由会员分享,可在线阅读,更多相关《C语言版的线性回归分析函数.docx(13页珍藏版)》请在冰豆网上搜索。
C语言版的线性回归分析函数
C语言版的线性回归分析函数
分类:
C/C++2007-08-0323:
3913840人阅读评论(31)收藏举报
语言c数学计算delphisystem
前几天,清理出一些十年以前DOS下的程序及代码,看来目前也没什么用了,想打个包刻在光碟上,却发现有些代码现在可能还能起作用,其中就有计算一元回归和多元回归的代码,一看代码文件时间,居然是1993年的,于是稍作整理,存放在这,分析虽不十分完整,但一般应用是没问题的,最起码,可提供给那些刚学C的学生们参考。
先看看一元线性回归函数代码:
// 求线性回归方程:
Y = a + bx
// dada[rows*2]数组:
X, Y;rows:
数据行数;a, b:
返回回归系数
// SquarePoor[4]:
返回方差分析指标:
回归平方和,剩余平方和,回归平方差,剩余平方差
// 返回值:
0求解成功,-1错误
int LinearRegression(double *data, int rows, double *a, double *b, double *SquarePoor)
{
int m;
double *p, Lxx = 0.0, Lxy = 0.0, xa = 0.0, ya = 0.0;
if (data == 0 || a == 0 || b == 0 || rows < 1)
return -1;
for (p = data, m = 0; m < rows; m ++)
{
xa += *p ++;
ya += *p ++;
}
xa /= rows; // X平均值
ya /= rows; // Y平均值
for (p = data, m = 0; m < rows; m ++, p += 2)
{
Lxx += ((*p - xa) * (*p - xa)); // Lxx = Sum((X - Xa)平方)
Lxy += ((*p - xa) * (*(p + 1) - ya)); // Lxy = Sum((X - Xa)(Y - Ya))
}
*b = Lxy / Lxx; // b = Lxy / Lxx
*a = ya - *b * xa; // a = Ya - b*Xa
if (SquarePoor == 0)
return 0;
// 方差分析
SquarePoor[0] = SquarePoor[1] = 0.0;
for (p = data, m = 0; m < rows; m ++, p ++)
{
Lxy = *a + *b * *p ++;
SquarePoor[0] += ((Lxy - ya) * (Lxy - ya));
// U(回归平方和)
SquarePoor[1] += ((*p - Lxy) * (*p - Lxy)); // Q(剩余平方和)
}
SquarePoor[2] = SquarePoor[0]; // 回归方差
SquarePoor[3] = SquarePoor[1] / (rows - 2); // 剩余方差
return 0;
}
为了理解代码,把几个与代码有关的公式写在下面(回归理论和公式推导就免了,网上搜索到处是,下面的公式图片也是网上搜的,有些公式图形网上没找到或者不合适,可参见后面多元回归中的公式):
1、回归方程式:
2、回归系数:
其中:
3、回归平方和:
4、剩余平方和:
实例计算:
double data1[12][2] = {
// X Y
{187.1, 25.4},
{179.5, 22.8},
{157.0, 20.6},
{197.0, 21.8},
{239.4, 32.4},
{217.8, 24.4},
{227.1, 29.3},
{233.4, 27.9},
{242.0, 27.8},
{251.9, 34.2},
{230.0, 29.2},
{271.8, 30.0}
};
void Display(double *dat, double *Answer, double *SquarePoor, int rows, int cols)
{
double v, *p;
int i, j;
printf("回归方程式:
Y = %.5lf", Answer[0]);
for (i = 1; i < cols; i ++)
printf(" + %.5lf*X%d", Answer[i], i);
printf("");
printf("回归显著性检验:
");
printf("回归平方和:
%12.4lf 回归方差:
%12.4lf", SquarePoor[0], SquarePoor[2]);
printf("剩余平方和:
%12.4lf 剩余方差:
%12.4lf", SquarePoor[1], SquarePoor[3]);
printf("离差平方和:
%12.4lf 标准误差:
%12.4lf", SquarePoor[0] + SquarePoor[1], sqrt(SquarePoor[3]));
printf("F 检 验:
%12.4lf 相关系数:
%12.4lf", SquarePoor[2] /SquarePoor[3],
sqrt(SquarePoor[0] / (SquarePoor[0] + SquarePoor[1])));
printf("剩余分析:
");
printf(" 观察值 估计值 剩余值 剩余平方");
for (i = 0, p = dat; i < rows; i ++, p ++)
{
v = Answer[0];
for (j = 1; j < cols; j ++, p ++)
v += *p * Answer[j];
printf("%12.2lf%12.2lf%12.2lf%12.2lf", *p, v, *p - v, (*p - v) * (*p - v));
}
system("pause");
}
int main()
{
double Answer[2], SquarePoor[4];
if (LinearRegression((double*)data1, 12, &Answer[0], &Answer[1], SquarePoor) == 0)
Display((double*)data1, Answer, SquarePoor, 12, 2);
return 0;
}
运行结果:
上面的函数和例子程序不仅计算了回归方程式,还计算了显著性检验指标,例如F检验指标,我们可以在统计F分布表上查到F0.01(1,10)=10.04(注:
括号里的1,10分别为回归平方和和剩余平方和所拥有的自由度),小于计算的F检验值25.94,可以认为该回归例子高度显著。
如果使用图形界面,可以根据原始数据和计算结果绘制各种图表,如散点图、趋势图、控制图等。
很多非线性方程可以借助数学计算,转化为直线方程进行回归分析。
同一元线性回归相比,多元线性回归分析代码可就复杂多了,必须求解线性方程,因此本代码中包含一个可独立使用的线性方程求解函数:
void FreeData(double **dat, double *d, int count)
{
int i, j;
free(d);
for (i = 0; i < count; i ++)
free(dat[i]);
free(dat);
}
// 解线性方程。
data[count*(count+1)]矩阵数组;count:
方程元数;
// Answer[count]:
求解数组 。
返回:
0求解成功,-1无解或者无穷解
int LinearEquations(double *data, int count, double *Answer)
{
int j, m, n;
double tmp, **dat, *d = data;
dat = (double**)malloc(count * sizeof(double*));
for (m = 0; m < count; m ++, d += (count + 1))
{
dat[m] = (double*)malloc((count + 1) * sizeof(double));
memcpy(dat[m], d, (count + 1) * sizeof(double));
}
d = (double*)malloc((count + 1) * sizeof(double));
for (m = 0; m < count - 1; m ++)
{
// 如果主对角线元素为0,行交换
for (n = m + 1; n < count && dat[m][m] == 0.0; n ++)
{
if ( dat[n][m] !
= 0.0)
{
memcpy(d, dat[m], (count + 1) * sizeof(double));
memcpy(dat[m], dat[n], (count + 1) * sizeof(double));
memcpy(dat[n], d, (count + 1) * sizeof(double));
}
}
// 行交换后,主对角线元素仍然为0,无解,返回-1
if (dat[m][m] == 0.0)
{
FreeData(dat, d, count);
return -1;
}
// 消元
for (n = m + 1; n < count; n ++)
{
tmp = dat[n][m] / dat[m][m];
for (j = m; j <= count; j ++)
dat[n][j] -= tmp * dat[m][j];
}
}
for (j = 0; j < count; j ++)
d[j] = 0.0;
// 求得count - 1的元
Answer[count - 1] = dat[count - 1][count] / dat[count - 1][count - 1];
// 逐行代入求各元
for (m = count - 2; m >= 0; m --)
{
for (j = count - 1; j > m; j --)
d[m] += Answer[j] * dat[m][j];
Answer[m] = (dat[m][count] - d[m]) / dat[m][m];
}
FreeData(dat, d, count);
return 0;
}
// 求多元回归方程:
Y = B0 + B1X1 + B2X2 + ...BnXn
// data[rows*cols]二维数组;X1i,X2i,...Xni,Yi (i=0 to rows-1)
// rows:
数据行数;cols数据列数;Answer[cols]:
返回回归系数数组(B0,B1...Bn)
// SquarePoor[4]:
返回方差分析指标:
回归平方和,剩余平方和,回归平方差,剩余平方差
// 返回值:
0求解成功,-1错误
int MultipleRegression(double *data, int rows, int cols, double *Answer, double *SquarePoor)
{
int m, n, i, count = cols - 1;
double *dat, *p, a, b;
if (data == 0 || Answer == 0 || rows < 2 || cols < 2)
return -1;
dat = (double*)malloc(cols * (cols + 1) * sizeof(double));
dat[0] = (double)rows;
for (n = 0; n < count; n ++) // n = 0 to cols - 2
{
a = b = 0.0;
for (p = data + n, m = 0; m < rows; m ++, p += cols)
{
a += *p;
b += (*p * *p);
}
dat[n + 1] = a;
// dat[0, n+1] = Sum(Xn)
dat[(n + 1) * (cols + 1)] = a; // dat[n+1, 0] = Sum(Xn)
dat[(n + 1) * (cols + 1) + n + 1] = b; // dat[n+1,n+1] = Sum(Xn * Xn)
for (i = n + 1; i < count; i ++) // i = n+1 to cols - 2
{
for (a = 0.0, p = data, m = 0; m < rows; m ++, p += cols)
a += (p[n] * p[i]);
dat[(n + 1) * (cols + 1) + i + 1] = a; // dat[n+1, i+1] = Sum(Xn * Xi)
dat[(i + 1) * (cols + 1) + n + 1] = a; // dat[i+1, n+1] = Sum(Xn * Xi)
}
}
for (b = 0.0, m = 0, p = data + n; m < rows; m ++, p += cols)
b += *p;
dat[cols] = b; // dat[0, cols] = Sum(Y)
for (n = 0; n < count; n ++)
{
for (a = 0.0, p = data, m = 0; m < rows; m ++, p += cols)
a += (p[n] * p[count]);
dat[(n + 1) * (cols + 1) + cols] = a; // dat[n+1, cols] = Sum(Xn * Y)
}
n = LinearEquations(dat, cols, Answer); // 计算方程式
// 方差分析
if (n == 0 && SquarePoor)
{
b = b / rows; // b = Y的平均值
SquarePoor[0] = SquarePoor[1] = 0.0;
p = data;
for (m = 0; m < rows; m ++, p ++)
{
for (i = 1, a = Answer[0]; i < cols; i ++, p ++)
a += (*p * Answer[i]); // a = Ym的估计值
SquarePoor[0] += ((a - b) * (a - b)); // U(回归平方和)
SquarePoor[1] += ((*p - a) * (*p - a)); // Q(剩余平方和)(*p = Ym)
}
SquarePoor[2] = SquarePoor[0] / count; // 回归方差
if(rows-cols>0.0)
SquarePoor[3]=SquarePoor[1]/(rows-cols);//剩余方差
else
SquarePoor[3]=0.0;
}
free(dat);
return n;
}
为了理解代码,同样贴几个主要公式在下面,其中回归平方和和剩余平方和公式和一元回归相同:
1、回归方程式:
2、回归系数方程组:
3、F检验:
4、相关系数:
,其中,Syy是离差平方和(回归平方和与剩余平方和之和)。
该公式其实就是U/(U+Q)的平方根(没找到这个公式的图)。
5、回归方差:
U/m,m为回归方程式中自变量的个数(没找到图)。
6、剩余方差:
Q/(n-m-1),n为观察数据的样本数,m同上(没找到图)。
7、标准误差:
也叫标准误,就是剩余方差的平方根(没找到图)。
下面是一个多元回归的例子:
double data[15][5] = {
// X1 X2 X3 X4 Y
{ 316, 1536, 874, 981, 3894 },
{ 385, 1771, 777, 1386, 4628 },
{ 299, 1565, 678, 1672, 4569 },
{ 326, 1970, 785, 1864, 5340 },
{ 441, 1890, 785, 2143, 5449 },
{ 460, 2050, 709, 2176, 5599 },
{ 470, 1873, 673, 1769, 5010 },
{ 504, 1955, 793, 2207, 5694 },
{ 348, 2016, 968, 2251, 5792 },
{ 400, 2199, 944, 2390, 6126 },
{ 496, 1328, 749, 2287, 5025 },
{ 497, 1920, 952, 2388, 5924 },
{ 533, 1400, 1452, 2093, 5657 },
{ 506, 1612, 1587, 2083, 6019 },
{ 458, 1613, 1485, 2390, 6141 },
};
void Display(double *dat, double *Answer, double *SquarePoor, int rows, int cols)
{
double v, *p;
int i, j;
printf("回归方程式:
Y = %.5lf", Answer[0]);
for (i = 1; i < cols; i ++)
printf(" + %.5lf*X%d", Answer[i], i);
printf("");
printf("回归显著性检验:
");
printf("回归平方和:
%12.4lf 回归方差:
%12.4lf", SquarePoor[0], SquarePoor[2]);
printf("剩余平方和:
%12.4lf 剩余方差:
%12.4lf", SquarePoor[1], SquarePoor[3]);
printf("离差平方和:
%12.4lf 标准误差:
%12.4lf", SquarePoor[0] + SquarePoor[1], sqrt(SquarePoor[3]));
printf("F 检 验:
%12.4lf 相关系数:
%12.4lf", SquarePoor[2] / SquarePoor[3],
sqrt(SquarePoor[0] / (SquarePoor[0] + SquarePoor[1])));
printf("剩余分析:
");
printf(" 观察值 估计值 剩余值 剩余平方");
for (i = 0, p = dat; i < rows; i ++, p ++)
{
v = Answer[0];
for (j = 1; j < cols; j ++