初中几何辅助线大全.docx

上传人:b****7 文档编号:23798962 上传时间:2023-05-20 格式:DOCX 页数:14 大小:52.46KB
下载 相关 举报
初中几何辅助线大全.docx_第1页
第1页 / 共14页
初中几何辅助线大全.docx_第2页
第2页 / 共14页
初中几何辅助线大全.docx_第3页
第3页 / 共14页
初中几何辅助线大全.docx_第4页
第4页 / 共14页
初中几何辅助线大全.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

初中几何辅助线大全.docx

《初中几何辅助线大全.docx》由会员分享,可在线阅读,更多相关《初中几何辅助线大全.docx(14页珍藏版)》请在冰豆网上搜索。

初中几何辅助线大全.docx

初中几何辅助线大全

初中数学辅助线的添加浅谈

一.添辅助线有两种情况:

1按定义添辅助线:

如证明两直线垂直可延长使它们相交,后证交角为90°;证线段倍半关系可使倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:

每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!

这样可防止乱添线,添辅助线也有规律可循。

举例如下:

(1)平行线是个基本图形:

当几何中出现平行线时添辅助线的关键是添与两条平行线都相交的第三条直线.

(2)等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的两条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的两边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形

出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形

几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形

全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:

或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线

(7)相似三角形

相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。

(8)特殊角直角三角形

当出现30°,45°,60°,135°,150°特殊角时可添加特殊角直角三角形,利用45°角直角三角形三边比为1:

1:

√2;30度角直角三角形三边比为1:

2:

√3进行证明

(9)半圆上的圆周角

出现直径与半圆上的点,添90°的圆周角;出现90°的圆周角则添它所对弦---直径。

二.基本图形的辅助线的画法

1.三角形问题添加辅助线方法

方法1:

有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:

含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:

结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:

结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2.平行四边形中常用辅助线的添法

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:

(1)连对角线或平移对角线:

(2)过顶点作对边的垂线构造直角三角形

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.

3.圆中常用辅助线的添法

在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。

(1)见弦作弦心距

有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。

(2)见直径作圆周角

在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。

(3)见切线作半径

命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。

(4)两圆相切作公切线

对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。

(5)两圆相交作公共弦

对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以

把两圆中的圆周角或圆心角联系起来。

三、作辅助线的方法

1.中点、中位线,延线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

2.垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

3.边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

4.造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:

第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:

“造角、平、相似,和差积商见。

托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)

5.两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

6.两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

7.切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

8.弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。

如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。

有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。

9.面积找底高,多边变三边。

如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。

如遇多边形,想法割补成三角形;反之,亦成立。

另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

初中几何辅助线

一初中几何常见辅助线口诀

人说几何很困难,难点就在辅助线。

辅助线,如何添?

把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形

平行四边形出现,对称中心等分点。

梯形问题巧转换,变为△和□。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

注意点

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

二由角平分线想到的辅助线

口诀:

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:

a、对称性;b、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;

②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线

(一)、截取构全等

几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。

下面就几何中常见的定理所涉及到的辅助线作以介绍。

如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:

BC=AB+CD。

分析:

此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。

但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

简证:

在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

自已试一试。

例2.已知:

如图1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC

分析:

此题还是利用角平分线来构造全等三角形。

构造的方法还是截取线段相等。

其它问题自已证明。

 

例3.已知:

如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:

AB-AC=CD

分析:

此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。

用到的是截取法来证明的,在长的线段上截取短的线段,来证明。

试试看可否把短的延长来证明呢?

(二)、角分线上点向角两边作垂线构全等

过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

例1.如图2-1,已知AB>AD,∠BAC=∠FAC,CD=BC。

求证:

∠ADC+∠B=180 

分析:

可由C向∠BAD的两边作垂线。

近而证∠ADC与∠B之和为平角。

例2.如图2-2,在△ABC中,∠A=90 ,AB=AC,∠ABD=∠CBD。

求证:

BC=AB+AD

分析:

过D作DE⊥BC于E,则AD=DE=CE,则构造出全等三角形,从而得证。

此题是证明线段的和差倍分问题,从中利用了相当于截取的方法。

例3.

已知如图2-3,△ABC的角平分线BM、CN相交于点P。

求证:

∠BAC的平分线也经过点P。

分析:

连接AP,证AP平分∠BAC即可,也就是证P到AB、AC的距离相等。

 

(三):

作角平分线的垂线构造等腰三角形

从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。

(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。

例1.

已知:

如图3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中点。

求证:

DH=

(AB-AC)

分析:

延长CD交AB于点E,则可得全等三角形。

问题可证。

例2.已知:

如图3-2,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:

BD=2CE。

分析:

给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。

例3.已知:

如图3-3在△ABC中,AD、AE分别∠BAC的内、外角平分线,过顶点B作BFAD,交AD的延长线于F,连结FC并延长交AE于M。

求证:

AM=ME。

分析:

由AD、AE是∠BAC内外角平分线,可得EA⊥AF,从而有BF//AE,所以想到利用比例线段证相等。

例4.已知:

如图3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于M。

求证:

AM=

(AB+AC)

分析:

题设中给出了角平分线AD,自然想到以AD为轴作对称变换,作△ABD关于AD的对称△AED,然后只需证DM=

EC,另外由求证的结果AM=

(AB+AC),即2AM=AB+AC,也可尝试作△ACM关于CM的对称△FCM,然后只需证DF=CF即可。

(四)、以角分线上一点做角的另一边的平行线

有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。

或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。

如图4-1和图4-2所示。

例4如图,AB>AC,∠1=∠2,求证:

AB-AC>BD-CD。

 

例5如图,BC>BA,BD平分∠ABC,且AD=CD,求证:

∠A+∠C=180。

 

例6如图,AB∥CD,AE、DE分别平分∠BAD各∠ADE,求证:

AD=AB+CD。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1