三 极 管.docx
《三 极 管.docx》由会员分享,可在线阅读,更多相关《三 极 管.docx(10页珍藏版)》请在冰豆网上搜索。
三极管
三极管
一、晶体三极管的结构和类型
晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两
侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
电压须在外部施用,以使晶体管操作。
施用电压以使电流朝著发射极箭头的方向移动。
施用电压时,发射极电流Ie、集电极电流Ic和基点电流Ib将产生以下的关系:
Ie=Ic+Ib
晶体管类型:
按材料分类,可分为:
硅晶体管、锗晶体管
按电极分类,可分为:
NPN晶体管、PNP晶体管
按功能分类,可分为:
光敏三极管、开关三极管、功率三极管
二、三极管的封装形式和管脚识别
常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为ebc;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为ebc。
电子制作中常用的三极管有90××系列,包括低频小功率硅管9013(NPN)、9012(PNP),低噪声管9014(NPN),高频小功率管9018(NPN)等。
它们的型号一般都标在塑壳上,而样子都一样,都是TO-92标准封装。
在老式的电子产品中还能见到3DG6(低频小功率硅管)、3AX31(低频小功率锗管)等,它们的型号也都印在金属的外壳上。
我国生产的晶体管有一套命名规则,电子爱好者最好还是了解一下:
第一部分的3表示为三极管。
第二部分表示器件的材料和结构,A:
PNP型锗材料B:
NPN型锗材料C:
PNP型硅材料D:
NPN型硅材料第三部分表示功能,U:
光电管K:
开关管X:
低频小功率管G:
高频小功率管D:
低频大功率管A:
高频大功率管。
另外,3DJ型为场效应管,BT打头的表示半导体特殊元件。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
三、三极管的放大及开关作用
1、三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量,如下图:
三极管有一个重要参数就是电流放大系数β。
当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。
集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,即
IE=IB+IC(符合克希荷夫电流定理)
IC≈IB×β(β称为电流放大系数,可表征三极管的电流放大能力)
△IC≈△IB×β
由上可见,三极管是一种具有电流放大作用的模拟器件。
放大原理:
(1)发射区向基区扩散电子:
由于发射结处于正向偏置,发射区的多数载流子(自由电子)不断扩散到基区,并不断从电源补充进电子,形成发射极电流IE。
(2)电子在基区扩散和复合:
由于基区很薄,其多数载流子(空穴)浓度很低,所以从发射极扩散过来的电子只有很少部分可以和基区空穴复合,形成比较小的基极电流IB,而剩下的绝大部分电子都能扩散到集电结边缘。
(3)集电区收集从发射区扩散过来的电子:
由于集电结反向偏置,可将从发射区扩散到基区并到达集电区边缘的电子拉入集电区,从而形成较大的集电极电流IC。
2、晶体管的开关作用
转换晶体管一般用作空调的电子控制。
转换晶体管具有以下特征:
(1)假如基点发射极电压Vbe偏低
晶体管内一种称为屏障势能的电阻存於集电极电流Ic的移动。
一旦充作开关器,对开关器触点作出反应的集电发射极C-E基于没有电流移动而启开,晶体管的开关则关闭。
(2)假如Vbe是0.6-0.8V
C-E间隙将会发生短路,电掣开著,而集电器电流开始流动。
Vbe将是0.6-0.8V。
晶体管可被视为电子继电器。
当最初的电压是0V,继电器关闭。
当最初电压是0.6至0.8V,继电器启开。
晶体管开关作用
晶体管发挥继电器功用
四、晶体三极管样图
NPN型三极管
PNP型晶体管
五、晶体三极管的三种工作状态
截止状态:
当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
放大状态:
当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通状态:
当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。
三极管的这种状态我们称之为饱和导通状态。
六、三极管的主要参数
1、共射电流放大系数β
三极管有一个重要参数就是电流放大系数β
β的定义为集电极电流与基极电流的变化量之比,即
当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。
集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。
2、共基电流放大系数α
α的定义是集电极电流与发射极电流的变化量之比,即
3、集电极和发射极之间的穿透电流ICEO
表示当基极b开路时,集电极c和发射极e之间的电流。
测量ICEO的电路如图:
(a)ICBO(b)ICEO
上述两个反向电流之间存在以下关系:
ICEO=(1+
)ICBO
ICBO和ICEO都是由少数载流子的运动形成的,所以对温度非常敏感。
当温度升高时,ICBO和ICEO都将急剧地增大。
实际工作中选用三极管时,要求三极管的反向饱和电流ICBO和穿透电流ICEO尽可能小一些,这两个反向电流的值愈小,表明三极管的质量愈高。
七、测判三极管的口诀
三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:
“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。
”下面让我们逐句进行解释。
(一)三颠倒,找基极
测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。
万用表的红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
(数字万用表红表笔所连接的是表内电池的正极,黑表笔连接着表内电池的负极。
)
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。
测试的第一步是判断哪个管脚是基极。
这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。
在这三次颠倒测量中,必然有两次测量结果相近:
即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。
(二)PN结,定管型
找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。
将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
(三)顺箭头,偏转大
找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?
这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1)对于NPN型三极管,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:
黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
(2)对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:
黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。
(四)测不出,动嘴巴
若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。
具体方法是:
在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。
其中人体起到直流偏置电阻的作用,目的是使效果更加明显。