鲁教版小学数学总复习基础知识.docx

上传人:b****8 文档编号:23660948 上传时间:2023-05-19 格式:DOCX 页数:26 大小:536.27KB
下载 相关 举报
鲁教版小学数学总复习基础知识.docx_第1页
第1页 / 共26页
鲁教版小学数学总复习基础知识.docx_第2页
第2页 / 共26页
鲁教版小学数学总复习基础知识.docx_第3页
第3页 / 共26页
鲁教版小学数学总复习基础知识.docx_第4页
第4页 / 共26页
鲁教版小学数学总复习基础知识.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

鲁教版小学数学总复习基础知识.docx

《鲁教版小学数学总复习基础知识.docx》由会员分享,可在线阅读,更多相关《鲁教版小学数学总复习基础知识.docx(26页珍藏版)》请在冰豆网上搜索。

鲁教版小学数学总复习基础知识.docx

鲁教版小学数学总复习基础知识

小学数学总复习基础知识

第一部份数与代数

(一)数的认识

一、整数【正数、0、负数】的意义

1、整数的意义  

自然数和0都是整数。

  

2、自然数  

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

  

一个物体也没有,用0表示。

0也是自然数。

  

3、计数单位  

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

  

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

  

4、数位  

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  

5、最小的一位数是1,最小的自然数是0。

6、0既不是正数,也不是负数。

正数都大于0,负数都小于0。

二、复习整数的读写法。

1.读法:

从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

   

2.写法:

从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  

三、复习数的改写。

1、多位数的改写。

把多位数改写成以“万”或“亿”作单位的数。

(1)把980000、476000、53200吨分别改成以“万”作单位的数。

980000=98万476000=47.6万53200吨=5.2万吨

在万位的右边点上小数点,去掉小数末尾的“0”加上单位“万”。

(2)把33000000000和1350000000分别改成以“亿”作单位的数。

33000000000=330亿1350000000=13.5亿

在亿位的右边点上小数点,去掉小数末尾的“0”加上单位“亿”。

2、求近似数。

(1)把42000和195000米省略“万”后面的尾数。

42000≈4万195000米≈20万米

去掉个级千位上的数四舍五入。

(3)把970300000和1240000000省略“亿”后面的尾数。

970300000≈10亿1240000000≈12亿

去掉万级和个级,万级千万位上的数四舍五入。

(3)把3.5、12.95、6.6843分别精确到个位、十分位、百分位。

3.5≈412.95≈13.06.6843≈6.68

精确到哪一位就看哪一位后面的数字,按四舍五入的方法取近似数。

3、“改写”和“求近似数’的对比。

相同点:

都是改变原来数的计数单位。

根据要求用“亿:

或“万”等作单位。

不同点:

“改写”只是改变数的单位,不改变数的大小,用“=”表示。

“求近似数”是用四舍五入法,既改变了数的单位,又改变数的大小,用“≈”表示

一、小数【有限小数、无限小数】意义

1、分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

3、每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

4、小数的性质:

小数的末尾添上“0”或去掉“0”,小数的大小不变。

5、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

6、比较小数大小的一般方法:

先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

8、求小数近似数的一般方法:

(1)先要弄清保留几位小数;

(2)根据需要确定看哪一位上的数;

(3)用“四舍五入”的方法求得结果。

二、小数的读法和写法。

1.小数的读法:

读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

  

2.小数的写法:

写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  

三、小数的分类  

1、纯小数:

整数部分是零的小数,叫做纯小数。

例如:

0.25、0.368都是纯小数。

  

2、带小数:

整数部分不是零的小数,叫做带小数。

例如:

3.25、5.26都是带小数。

3、有限小数:

小数部分的数位是有限的小数,叫做有限小数。

例如:

41.7、25.3、0.23都是有限小数。

4、无限小数:

小数部分的数位是无限的小数,叫做无限小数。

例如:

4.33……3.1415926……

5、无限不循环小数:

一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

例如:

6、循环小数:

一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

例如:

3.555……0.0333……12.109109……  

7、一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

例如:

3.99……的循环节是“9”,0.5454……的循环节是“54”。

  

8、纯循环小数:

循环节从小数部分第一位开始的,叫做纯循环小数。

例如:

3.111……0.5656……  

9、混循环小数:

循环节不是从小数部分第一位开始的,叫做混循环小数。

3.1222……0.03333……

10、写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有一个数字,就只在它的上面点一个点。

例如:

3.777……简写作0.5302302……简写作。

四、整数和小数的数位顺序表:

 

整数部分

小数点

小数部分

亿级

万级

个级

数位

千亿位

百亿位

十亿位

亿

 

千万位

百万位

十万位

 

 

 

 

 

·

十分位

百分位

千分位

万分位

计数单位

千亿

百亿

十亿

亿

千万

百万

十万

(一)

十分之一

百分之一

千分之一

万分之一

分数【真分数、假分数】

(三)分数

1、分数的意义  

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

  

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

  

2、分数的分类  

真分数:

分子比分母小的分数叫做真分数。

真分数小于1。

  

假分数:

分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

  

带分数:

假分数可以写成整数与真分数合成的数,通常叫做带分数。

  

3、约分和通分  

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

  

分子分母是互质数的分数,叫做最简分数。

  

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  

(四)百分数

1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数通常用"%"来表示。

百分号是表示百分数的符号。

  

百分数【税率、利息、折扣、成数】

1、表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫百分率或

百分比,百分数通常用“%”表示。

2、分数与百分数比较:

 

不同点

相同点

分 数

可以表示具体数量,可以有单位名称

表示两个数之间的关系

百分数

不可以表示具体数量,不可以有单位名称

3、分数、小数、百分数的互化。

(1)把分数化成小数,用分数的分子除以分母。

(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。

(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

4、熟记常用三数的互化。

=0.5=50%

≈0.333=33.3%

≈0.667=66.7%

=0.25=25%

=0.75=75%

=0.2=20%

=0.4=40%

=0.6=60%

=0.8=80%

≈0.167=16.7%

≈0.833=83.3%

=0.125=12.5%

=0.375=37.5%

=0.625=62.5%

=0.875=87.5%

=0.1=10%

=0.3=30%

=0.7=70%

=0.9=90%

=0.05=5%

=0.15=15%

=0.35=35%

=0.45=45%

=0.55=55%

=0.65=65%

=0.85=85%

=0.95=95%

=0.04=4%

=0.025=2.5%

=0.02=2%

=0.01=1%

5、出勤率表示出勤人数占总人数的百分之几。

  合格率表示合格件数占总件数的百分之几。

  成活率表示成活棵数占总棵数的百分之几。

6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

7、多的÷“1”=多百分之几      少的÷“1”=少百分之几    

8、应得利息是税前利息,实得利息是税后利息。

9、利息=本金×利率×时间

10、应得利息-利息税=实得利息

11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。

12、原价×折扣=现价     现价÷原价=折扣     现价÷折扣=原价

13、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。

因数与倍数【素数、合数、奇数、偶数】

1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。

2、一个数最小的倍数是它本身,没有最大的倍数。

一个数倍数的个数是无限的。

3、一个数最小的因数是1,最大的因数是它本身。

一个数因数的个数是有限的。

4、5的倍数:

个位上的数是5或0。

  2的倍数:

个位上的数是2、4、6、8或0。

2的倍数都是双数。

  3的倍数:

各位上数的和一定是3的倍数。

5、是2的倍数的数叫做偶数。

不是2的倍数的数叫做奇数。

6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。

7、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。

8、在1—20这些数中:

 (1既不是素数,也不是合数)

  奇数:

1、3、5、7、9、11、13、15、17、19。

  偶数:

2、4、6、8、10、12、14、16、18、20。

  素数:

2、3、5、7、11、13、17、19。

(共8个,和为77。

  合数:

4、6、8、9、10、12、14、15、16、18、20。

(共11个,和为132。

9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。

10、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。

11、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。

(二)数的运算

计算法则【整数、小数、分数】

1、计算整数加、减法要把相同数位对齐,从低位算起。

2、计算小数加、减法要把小数点对齐,从低位算起。

3、小数乘法:

(1)先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(2)注意:

在积里点小数点时,位数不够的,要在前面用0补足。

4、小数除法:

(1)商的小数点要和被除数的小数点对齐;

(2)有余数时,要在后面添0,继续往下除;

(3)个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。

(4)把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。

(5)当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。

5、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……

6、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……

7、分数加、减法:

(1)同分母分数相加减,把分子相加减,分母不变。

(2)异分母分数相加减,要先通分化成同分母分数,然后再相加减。

8、分数大小的比较:

(1)同分母分数相比较,分子大的大,分子小的小。

(2)异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

9、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

10、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

 

四则运算关系

 加法

一个加数=和-另一个加数

减法

被减数=差+减数     减数=被减数-差

乘法

一个因数=积÷另一个因数

除法

被除数=商×除数    除数=被除数÷商

 两个规律

1、除法的商不变规律:

被除数和除数同时乘或除以相同的数(0除外),商不变。

2、乘法的积不变规律:

如果一个因数乘几,另一个因数则除以几,那么它们的积不变。

 简便计算

1、运算定律:

运算定律

用字母表示

加法交换律

a+b=b+a

加法结合律

(a+b)+c=a+(b+c)

乘法交换律

a×b=b×a

乘法结合律

(a×b)×c=a×(b×c)

乘法分配律

(a+b)×c=a×c+b×c

减法运算规律

a-b-c=a-(b+c)

除法运算规律

a÷b÷c=a÷(b×c)

 

2、乘、除法的互化。

(小技巧:

符号是相反的;两个数相乘得“1”。

(1)A÷0.1=A×10

(2)A×0.1=A÷10

(7)A÷0.01=A×100; 

(8)A×0.01=A÷100

(3)A÷0.2=A×5

(4)A×0.2=A÷5

(9)A÷0.25=A×4

(10)A×0.25=A÷4

(5)A÷0.5=A×2

(6)A×0.5=A÷2

(11)A÷0.125=A×8

(12)A×0.125=A÷8

 3、求近似数的方法。

(1)四舍五入法。

  

(2)进一法。

  (3)去尾法。

4、积与因数、商与被除数的大小比较:

 第2个因数>1,积>第1个因数;

第2个因数=1,积=第1个因数;

第2个因数<1,积<第1个因数。

除数>1,商<被除数;

除数=1,商=被除数;

除数<1,商>被除数;

 数量关系

单价×数量=总价

总价÷数量=单价

总价÷单价=数量

工作效率×工作时间=工作总量

工作总量÷工作时间=工作效率

工作总量÷工作效率=工作时间

速度×时间=路程

路程÷时间=速度

路程÷速度=时间

速度和×相遇时间=路程

路程÷相遇时间=速度和

路程÷速度和=相遇时间

 (三)式与方程

用字母表示数

1、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写。

在省略数字与字母之间的乘号时,要把数字写在字母的前面。

2、2a与a2意义不同:

2a表示两个a相加,a2表示两个a相乘。

即:

2a=a+a,a2=a×a。

3、用字母表示数:

(1)用字母表示任意数:

如X=4  a=6

(2)用字母表示常见的数量关系:

如s=vt

(3)用字母表示运算定律:

如a+b=b+a

(4)用字母表示计算公式:

S=ah

方程与等式

1、含有未知数的等式叫做方程。

2、使方程左右两边相等的未知数的值,叫做方程的解。

3、求方程的解的过程,叫做解方程。

4、方程和等式的联系与区别:

 

方 程

等 式

联系

方程一定是等式,等式不一定是方程

区别

含有未知数

不一定含有未知数

5、等式的基本性质

(一)

等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式。

6、等式的基本性质

(二)

等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式。

7、列方程解应用题的一般步骤:

(1)弄清题意,找出未知数并用X表示。

(2)找出应用题中数量间的相等关系,并列出方程。

(3)求出方程的解。

(4)检验或验算,写出答案。

 (四)正比例与反比例

比和比例

1、比和比例的联系与区别:

 

 

1、意义不同

比的意义

两个数相除又叫做两个数的比。

比例的意义

表示两个比相等的式子叫做比例。

2、名称不同

比的名称

两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比例的名称

组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项。

3、性质不同

比的性质

比的前项和后项同时乘或者除以相同的数(0除外),比值不变。

比例的性质

在比例里,两个外项的积等于两个内项的积。

4、应用不同

应用比的意义

求比值。

应用比的性质

化简比。

应用比例的意义

判断两个不能否组成比例。

应用比例的性质

不但可以判断两个比能否组成比例,还可以解比例。

 2、比同分数、除法的联系与区别:

 

分数

除法

 

前项

分子

被除数

比号

分数线

除号

后项

分母

除数

比值

分数值

比的基本性质

分数的基本性质

除法的商不变性质

比表示两个数之间的关系。

分数表示一个数。

除法表示一种运算。

 

 

3、求比值与化简比的区别:

 

一般方法

结  果

求比值

根据比值的意义,用前项除以后项。

是一个数。

可以是整数、小数或分数。

化简比

根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外)。

是一个比。

它的前项和后项都是整数,并且是互质数。

 4、化简比:

(1)整数比的化简方法是:

用比的前项和后项同时除以它们的最大公约数。

(2)小数比的化简方法是:

先把小数比化成整数比,再按整数比化简方法化简。

(3)分数比的化简方法是:

用比的前项和后项同时乘以分母的最小公倍数。

5、比例尺:

我们把图上距离和实际距离的比叫做这幅图的比例尺。

6、比例尺=图上距离︰实际距离

比例尺=

正比例、反比例

 1、正比例:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

2、反比例:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

                      

 

3、正比例与反比例的区别:

 

 

正比例

反比例

相同点

都有两种相关联的量,一种量变化,另一种量也随着变化。

不同点

商一定

=k(一定)

积一定

x×y=k(一定)

 

 

第二部份  空间与图形

(一)图形的认识、测量

量的计量

1、长度单位是用来测量物体的长度的。

常用的长度单位有:

千米、米、分米、厘米、毫米。

2、长度单位:

(10)

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=100厘米

 

3、面积单位是用来测量物体的表面或平面图形的大小的。

常用的面积单位有:

平方千米、公顷、平方米、平方分米、平方厘米。

4、测量和计算土地面积,通常用公顷作单位。

边长100米的正方形土地,面积是1公顷。

5、测量和计算大面积的土地,通常用平方千米作单位。

边长1000米的正方形土地,面积是1平方千米。

6、面积单位:

(100)

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

7、体积单位是用来测量物体所占空间的大小的。

常用的体积单位有:

立方米、立方分米(升)、立方厘米(毫升)。

8、体积单位:

(1000)    

1立方米=1000立方分米

1立方分米=1000立方厘米

1升=1000毫升

 

9、常用的质量单位有:

吨、千克、克。

10、质量单位:

1吨=1000千克

1千克=1000克

11、常用的时间单位有:

世纪、年、季度、月、旬、日、时、分、秒。

12、时间单位:

(60)   

1世纪=100年

1年=12个月

1年=4个季度

1个季度=3个月

1个月=3旬

大月=31天

小月=30天

平年二月=28天

闰年二月=29天

1天=24小时

1小时=60分

1分=60秒

13、高级单位的名数改写成低级单位的名数应该乘以进率;

   低级单位的名数改写成高级单位的名数应该除以进率。

14、常用计量单位用字母表示:

千米:

km

米:

m

分米:

dm

厘米:

cm

毫米:

mm

吨:

t

千克:

kg

克:

g

升:

l

毫升:

ml

 

平面图形【认识、周长、面积】

1、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。

线段、射线都是直线上的一部分。

线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

2、从一点引出两条射线,就组成了一个角。

角的大小与两边叉开的大小有关,与边的长短无关。

角的大小的计量单位是(°)。

3、角的分类:

小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

4、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

5、三角形是由三条线段围成的图形。

围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

6、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。

7、三角形的内角和等于180度。

8、在一个三角形中,任意两边之和大于第三边。

9、在一个三角形中,最多只有一个直角或最多只有一个钝角。

10、四边形是由四条边围成的图形。

常见的特殊四边形有:

平行四边形、长方形、正方形、梯形。

11、圆是一种曲线图形。

圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。

通过圆心并且两端都在圆的线段叫做圆的直径。

12、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。

这条直线叫做对称轴。

13、围成一个图形的所有边长的总和就是这个图形的周长。

14、物体的表面或围成的平面图形的大小,叫做它们的面积。

15、平面图形的面积计算公式推导:

【1】平行四边形面积公式的推导过程?

  

 

(1)把平行四边形通过剪切、平移可以转化成一个长方形。

 

(2)长方

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 公务员考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1