3D打印机系统设计.doc
《3D打印机系统设计.doc》由会员分享,可在线阅读,更多相关《3D打印机系统设计.doc(43页珍藏版)》请在冰豆网上搜索。
HarbinInstituteofTechnology
课程设计说明书
课程名称:
自动控制元件及线路
设计题目:
3D打印机的研究与设计方案
院系:
航天学院自动化
班级:
1104104
设计者:
学号:
指导教师:
设计时间:
10.15--12.22
哈尔滨工业大学
摘要
本次课程设计通过对2D打印机的了解和对电机传感器的认识,通过类比和分析来初步设计3D打印机。
本文主要内容为电机类型,型号选择及参数的测算,并且应用了PWM控制等数字信号在电机控制中进行驱动。
比较了不同种类传感器的优劣,选出了对比优化方案及元件。
利用控制理论实现了3维定位和实现打印功能,给出初步设计方案。
关键词:
步进电机、传感器、3D、定位控制系统、数字信号处理器
一、国内外在该方面的研究现状分析及研究的目的意义
1、现状及研究意义:
3D打印快速成型技术实质是“快速成型技术”,也被称为“增量技术”、“增材技术”,是传统制造技术与新材料的完美结合,并且将带动工业设计、新材料、精益制造等多个领域颠覆性的改变。
3D打印技术作为目前最具有生命力的快速成型技术之一,适用于家用电器、办公室用品、建筑模型、医学模型等领域的新产品开发,已经广泛应用到航空航天等军事领域和大型复杂构件的一次成型制造,在国外,3D打印机已经商品化。
作为一种经济型快速成型技术,综合应用了CAD/CAM技术、激光技术,光化学以及材料科学等绪多方面的技术和知识,让产品设计、建筑设计、工业设计、医疗用品设计等领域的设计者,第一时间方便轻松的获得全彩色实物模型,便于重新修定CAD设计模型,从而节省了为错误设计制造工艺装备的费用,并节省了研制时间。
它具有成本低、系统可靠性高,设备体积小、噪声小、成型速度快、产品材料与颜色可多样化等优点,与传统技术相比,三维打印技术还拥有如下优势:
通过摒弃生产线而降低了成本;大幅减少了材料浪费。
具有巨大的应用潜能和广阔的市场前景。
当下,我国的3D打印技术还处于起步阶段,3D打印技术基本由大学和一些小企业在做研究,尚未有成品出现,在软件和材料方面相对落后,但是,就在2012年10月17日,中国3D打印技术产业联盟已经成立,这就意味着中国开始越来越重视该技术。
因此,开展三维打印快速成型机控制系统的研发,具有重要的现实意义。
本课题通过对该机械系统的研究,探索并深入了解电机,传感器及反馈系统,达到加深对课内知识的理解的目的,并利用控制理论实现了3维定位和实现打印功能,给出初步设计方案。
。
2、基本原理:
每一层的打印过程分为两步,首先在需要成型的区域喷洒一层特殊胶水,胶水液滴本身很小,且不易扩散。
然后是喷洒一层均匀的粉末,粉末遇到胶水会迅速固化黏结,而没有胶水的区域仍保持松散状态。
这样在一层胶水一层粉末的交替下,实体模型将会被“打印”成型,打印完毕后只要扫除松散的粉末即可得到模型,而剩余粉末还可循环利用。
二、任务分析
1、确定实现系统功能:
设计一个3D打印机,可以实现用热能加热熔融材料,并从喷头喷出,逐层堆积出模型。
由3D打印机的基本原理我们分析其功能需求大致有:
分层软件、叠加粘贴、输入图形、定位监测等。
3D打印与2D打印相同之处在于,其都是采用逐渐扫描,扫描完毕再输出的设备。
2、性能指标:
(1).温度范围:
储存温度:
0-32℃
工作温度:
15-32℃
(2).工作空间
速度
尺寸(cm)
最大工作长(宽)度
30
最大工作高度
38
(3)打印速度精度:
定位精度:
x、y轴0.011mm,z轴0.0025mm
打印速度:
4s/层每层厚度:
0.18mm
喷嘴直径:
0.4mm运动轴速度:
40mm/s
三、技术实现方案
1.结构设计:
主要分为三大部分,一为电机控制位移系统,二为传感反馈系统,三为电源系统。
电机控制分为驱动喷头和控制位移两大部分。
传感反馈分为位置传感器、温湿度传感和压力传感器。
机械结构
X轴机构选用导轨-同步齿形带机构;Y轴机构选用光杠-同步齿形带机构;Z轴机构选用两副光杠-丝杠机构;铺粉辊机构选用导轨-同步齿形带机构。
控制系统
图2位移快速定位系统
在经济型数控机床中,普遍采用步进电机作为伺服驱动部件。
步进电机将电脉冲信号转换成角位移,驱动执行机构按一定的规律运动。
高精度的位置控制常采用全闭环控制。
然而全闭环位置控制不仅需要高精度的位置检测装置,而且控制系统结构包含非线性环节导致控制系统模型复杂化,影响系统的稳定性和快速性。
1.选择电机:
电动机型式、电压与转速的选择
(1)根据电机启动频率,有无调速要求选择是使用直流电动机或交流电动机;
(2)选择电动机额定电压的大小;
(3)根据转速要求及传动设备的质量选取它的额定转速与转矩;
(4)由生产机械所需要的功率大小来决定电动机的额定功率(容量)。
综合以上方面考虑,最后选择与要求相符的电动机。
b.几种电机的参数性能比较:
步进电机
直流电机
伺服电机
力矩和速度
在低速下满转矩,速度增加转矩明显下降
在速度增大的情况下,转矩变化很小
几乎线性化的力、速度曲线
动态特性(速度和加速度)
小
小
良好的加速度特性,高速
稳定性
加速的时候固定平率的振动会引发问题,细分控制可减少此类问题
整个动态范围内平滑、安静运动
宽动态范围内平稳运动
目标位置
准确达到目标位置;自然力矩保持位置稳;开环控制下,如果过载或者超速,目标位置无法达到
通过闭环控制达到目标位置(有未知错误纠正功能);PID整定不正确的情况下,纠正位置错误;可能出现位置超出或持续误差
更高速度、更小步距、无后冲。
表5.1.1各电机参数性能比较
我们主要对比了步进电机和伺服电机的性能参数:
1、控制精度不同。
步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。
2、控制方式不同;一个是开环控制,一个是闭环控制。
3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。
交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。
4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出。
5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。
6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。
7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。
从性能角度出发,通过以下几方面的考虑我们选择使用方案一的步进电机:
1.将电脉冲信号转变为角位移或线位移,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度;
2.可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;
3.同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的;
4.可以精确地到达目标位置,精度相比直流无刷电机更加高,开环便于控制;
5.使用细分功率放大器并使用高输入信号频率可基本消除共振现象。
综上所述,步进电机不需要反馈信号,就可以对系统的位置、速度输出直接控制,而且价格较为便宜,虽然打印速度不快,而我们所做的3D打印机并不要求高速运转,所以选用步进电机作为驱动装置。
使用步进电机,步进电机的最大优点就是可以将电脉冲信号转变为角位移或线位移,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
这个优点正满足我们所设计的电机的要求,虽然步进电机存在‘失步’以及自身振荡等缺点,但是由于他无位置误差积累的优点,使它在控制各轴运动定位时能够避免产生较大的误差,从而可以精确地到达目标位置,精度相比其他种类电机更加高,开环便于控制。
而且,在此选择使用细分功放并使用高输入信号频率可有效降低共振现象。
因控制器具有采样周期的时间限制,当升速率较高时步进电机的转速容易穿越开关线,形成极限环,造成系统振荡,无法正常工作。
针对上述情况步进电机快速准确定位系统控制器的设计,步进电机快速准确定位系统的结构框图,由位置补偿表、位置控制器、升降速控制器、信号转换器、转速及位置检测器和转速反馈及失步检测器等功能模块组成。
上位机向步进电机定位系统下达位置指令X0控制器根据起始位置、目标位置和转向查找位置补偿表得到补偿位置∆X,形成实际位置指令Xs,进而得到位置偏差e,位置控制器根据偏差e和步进电机当前转速nf发出转速指令ns,再由升降速控制器按照一定的规律计算出当前步进电机的转速n,之后由信号转换器解析为转向信号dir和脉冲信号cp,控制步进电机的转速和转向,使步进电机以一定规律的速度到达指令位置X0。
当系统到达指令位置X0时,位置控制器必须使步进电机的转速降为可停车转速,从而达到快速准确定位控制的要求。
3D打印机在功能上与2D不同的即为增加了一个维度上的控制。
对于如何增加z轴的控制,我们做了如下分析:
一种方案为,采取喷嘴直接喷热固性塑料在加热底板上,在喷嘴处有一电机控制喷嘴高度,高度一点一点增加,即可慢慢打印出想要的样品。
另一种方案为,采用原料与黏胶分别放置的办法,采用滚桶将原料槽升起所供应的原料颗粒推至加工平面,然后采用喷嘴直接喷洒黏胶在所需面积上,每加工完一层,加工平面即下降一层的高度以容纳下一层,直至样品打印结束。
另外结构上,我们还参考借鉴已经成型的DeltaRobot的工作方式(如图1),使用如下的三纵轴3D打印机结构。
该打印机与传统3D打印机有所不同,关键在于对打印点的定位方式。
传统的3D打印机采用自然坐标系的坐标轴定义,在X,Y,Z三个维度上都采用螺杆丝杠传动,用电机带动丝杠从而对喷头进行控制与定位。
而RostockMAX采用的是三倾斜杆与喷头的二自由度连接,通过控制三个倾斜杆顶端的滑块移动来实现对喷头在工作区域的定位。
图1.DeltaRobot
在第一种中,x,y,z轴均在喷嘴处控制,而第二种中对于喷嘴而言,加工平面高度是不变的,由加工平面下的电机来不断调整z轴的高度。
第一种的优势在于,想法简单,结构简单。
但其缺点在于,如要打印空腔型的物体(譬如收口很小的高脚杯)则无法打印。
而第二种可以打印出空腔型物体