高等仪器分析红外光谱在聚氨酯表征方面的应用.docx

上传人:b****7 文档编号:23508370 上传时间:2023-05-17 格式:DOCX 页数:13 大小:297.18KB
下载 相关 举报
高等仪器分析红外光谱在聚氨酯表征方面的应用.docx_第1页
第1页 / 共13页
高等仪器分析红外光谱在聚氨酯表征方面的应用.docx_第2页
第2页 / 共13页
高等仪器分析红外光谱在聚氨酯表征方面的应用.docx_第3页
第3页 / 共13页
高等仪器分析红外光谱在聚氨酯表征方面的应用.docx_第4页
第4页 / 共13页
高等仪器分析红外光谱在聚氨酯表征方面的应用.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

高等仪器分析红外光谱在聚氨酯表征方面的应用.docx

《高等仪器分析红外光谱在聚氨酯表征方面的应用.docx》由会员分享,可在线阅读,更多相关《高等仪器分析红外光谱在聚氨酯表征方面的应用.docx(13页珍藏版)》请在冰豆网上搜索。

高等仪器分析红外光谱在聚氨酯表征方面的应用.docx

高等仪器分析红外光谱在聚氨酯表征方面的应用

高等仪器分析-红外光谱在聚氨酯表征方面的应用

红外光谱在聚氨酯表征方面的应用

摘要:

聚氨酯(PU)综合性能优良,有着极为广泛的应用,是科研领域的研究热点。

而红外光谱(IR)是聚氨酯结构表征中不可或缺的表征方法。

本文从红外光谱的原理和聚氨酯的实用性出发,综述了红外光谱在合成与改性聚氨酯过程中的表征应用。

关键词:

聚氨酯,红外光谱,表征

 

TheApplicationsofFTIRinWaterbornePolyurethaneCharacterization

Abstract:

Polyurethane(PU)isafocusinscientificfieldsduetoitsexcellentproperitiesandbroadapplications.AndInfraredspectroscopy(IR)isoneofessentialmethodstocharacterizethechemicalstructureofPU.ThisreviewstartedwiththeprincipleofIRandthepracticabilityofPU,

体构型;根据所得的力常数可以知道化学键的强弱;由简正频率来计算热力学函数。

二是对物质的化学组成的分析,用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物结构,依照特征吸收峰的强度来测定混合物中各组分的含量。

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。

其中应用最广泛的还是化合物的结构鉴定,根据红外光谱的峰位、峰强及峰形判断化合物中可能存在的官能团,从而推断出未知物的结构。

通过比较大量已知化合物的红外光谱,发现组成分子的各种基团(如O-H、N-H、C-H、C=C、C=O等),都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。

通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。

另外除光学异构体及长链烷烃同系物外,几乎没有两种化合物具有相同的红外吸收光谱,即所谓红外光谱具有“指纹性”。

[3]谱图中的吸收峰与分子中各基团的振动特性相对应,所以红外吸收光谱是确定化学基团、鉴定未知结构的重要工具之一。

红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。

此外,红外光谱还具有测试迅速、操作方便、重复性好、灵敏度高、试样用量少、仪器结构简单等特点,因此,红外光谱已成为现代结构化学和分析化学最常用和不可缺少的工具。

此外,红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。

[4]

1.聚氨酯简介

聚氨酯全称为聚氨基甲酸酯,英文名称是polyurethane,简称PU,分子链中含有许多重复的氨基甲酸酯基团(

)。

聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。

产品应用领域涉及轻工、化工、电子、纺织、医疗、建筑、建材、汽车、国防、航天、航空等。

聚氨酯是以氨基甲酸酯基团为特征基团的高分子材料,由柔韧的软链段和刚性相对较好的硬链段嵌段而成。

聚氨酯的综合性能优良,软硬段可调范围较广,已被广泛应用于涂料、胶黏剂、弹性体、密封胶、纤维、泡沫材料等领域。

[5]

聚氨酯根据其组成的不同,可制成线型分子的热塑性聚氨酯,也可制成体型分子的热固性聚氨酯。

前者主要用于弹性体、涂料、胶黏剂、合成革等,后者主要用于制造各种软质、半硬质、硬质泡沫塑料。

由于聚氨酯树脂独一无二的特性:

它可以集合良好的强度、韧性、耐磨性、耐溶剂性等性能于一身,而且可以根据用户的要求对具体的性能进行调节,因此它在多种领域得到了广泛的应用,消费量持续增长。

典型的应用领域包括,皮革涂饰剂、装饰涂料、粘合剂、工业养护和家用的防腐蚀涂料、地板漆、无缝地(面)板、船舶涂料、电磁领域用的涂料、乃至混凝土密封剂等。

在涂料油墨领域,聚氨酯树脂作为较为高档连结料的作用也日益突出。

[6]

2.红外光谱在聚氨酯表征方面的应用

红外光谱法(IR)由于制样方便,给出的结构信息丰富,成为各种聚合物鉴定最常用的方法。

如果分子中含有一些极性较强的基团,则对应这些基团的一些谱带在这个化合物的IR光谱中往往是最强的,明显地显示这个基团的结构特征。

[7]对于各种聚合物分子来说,含有的主要极性基团是酯、酸、酰胺、酰亚胺、苯醚、脂肪醚和醇等。

此外,含有硅、硫、磷、氯和氟等杂原子的化合物也常具有较强的极性。

因此,对应这些基团的谱带在其聚合物的谱图中,常常是处于最显著的地位,能够很特征地反映该类聚合物的结构和预示其存在。

聚氨酯是以氨基甲酸酯基团(

)为特征基团的聚合物,而红外光谱是聚氨酯合成与改性中不可或缺的一种表征方法。

用红外光谱表征聚氨酯结构时,首先通过观察是否有氨基甲酸酯的吸收谱带,判断是否形成了聚氨酯结构。

其次通过观察是否有其他特征基团或杂原子化合物的吸收谱带,进一步确定具体的聚氨酯结构,并判断样品中是否含有其他成分(增塑剂或无机填料)。

3.1水性聚氨酯

聚氨酯的综合性能优良,软硬段可调范围较广,已被广泛应用于涂料、胶黏剂、弹性体、密封胶、纤维、泡沫材料等领域。

然而,传统的溶剂型聚氨酯在生产和施工过程中会产生大量的挥发性有机化合物(VOC),给环境和人类健康造成了很大的危害。

因此,低VOC或零VOC的水性聚氨酯(WPU)得到了广泛的关注。

王建龙课题组[8]以水性聚氨酯预聚体的自乳化历程及水乳液的稳定机理为基础,采用自乳化法制备了聚酯型水性聚氨酯乳液,并将所得乳液于四氟乙烯板上溜延成膜,且利用相应仪器对其结构与性能进行表征。

其中,红外分析过程是将所制备的水性聚氨酯乳液涂抹于KBr片上,利用傅里叶变换红外光谱仪对样品的结构进行表征。

(图1)

图1为水性聚氨酯预聚体扩链前(a)、后(b)的红外光谱图,由图可见水性聚氨酯经1, 4丁二醇扩链后,反应体系中—NCO基团的特征吸收峰(2270cm-1)基本消失,这说明体系中—NCO的反应基本完全。

水性聚氨酯预聚体结构中,形成了大量的氨基甲酸酯基团,其中—NH的吸收谱带在3352cm-1处,C=O的吸收谱带在1730cm-1处,2960cm-1左右处为甲基和亚甲基中C—H的特征吸收峰,符合水性聚氨酯结构应有的红外吸收特征。

当水性聚氨酯被中和乳化后,剩余的少量—NCO将与水发生反应,生成疏水性脲键基团,使产品中游离的—NCO含量降低至零,从而使得合成的水性聚氨酯性能较稳定、无毒、环保。

[9]

随着人们对材料安全和环境保护的重视,以水为分散介质的水性聚氨酯应运而生,其中超支化水性聚氨酯具有较高的交联程度,与线型聚氨酯相比,热稳定性和耐水性能也有所提高,因此超支化水性聚氨酯成为近年来聚氨酯合成的一个热点[10]。

任龙芳课[11]题组异佛尔酮二异氰酸酯(IPDI)、聚碳酸酯二醇(PCDL)、二乙醇胺(DEA)、蓖麻油(C.O.)、二羟甲基丙酸(DMPA)为原料,采用接枝共聚制备了一种树枝状水性聚氨酯,并对其结构性能进行了研究。

其中,用VERTEX70型傅里叶变换红外-拉曼光谱仪,采用衰减全反射(ATR)模式,对聚氨酯的分子结构进行红外分析。

(图2)

图2IPDI,1GPAMAM和产物的红外光谱图。

图2为IPDI,1GPAMAM和产物的红外光谱图。

对比IPDI与产物的红外谱图可以看出,2253cm-1处的吸收峰消失,说明IPDI的-NCO基反应完全;产物在3340cm-1处存在—NH和—OH的伸缩振动峰,1731cm-1处出现较强的碳酸酯和氨基甲酸酯中—C=O伸缩振动峰,1532cm-1处也有明显的N—H变形振动峰,上述吸收峰的出现说明产物中生成了氨基甲酸酯基。

3.2可降解聚氨酯

由于聚氨酯化学性质较为稳定、自然降解性差,存在污染环境的缺点,所以开发和研究易降解的聚氨酯成为了一个重要的方向。

刘海艳课题组[12]以聚酯二元醇PBA为软段材料、以二羟甲基丙酸为亲水扩链剂和二异氰酸酯反应制备聚氨酯预聚体,并通过三元共聚硅油(S)接枝改性制备了系列水性聚氨酯(WPU)乳液。

然后将聚氨酯乳液置于聚四氟乙烯模具中,使其薄厚适中,室温下放置96h,然后在60℃烘箱中烘48h,制得胶膜。

WPU胶膜不需要压片,直接使用傅里叶变换红外光谱仪进行红外检测。

(图2)

图3接三元硅油与不接三元硅油的S水性聚氨酯红外光谱图

图3为三元共聚硅油S、WPU0和WPU3的红外光谱图。

三元共聚硅油在1260cm-1,1000cm-1~1100cm-1和803cm-1存在硅氧烷的吸收特征峰,WPU0和WPU3在3330cm-1处为脲基中N—H的伸缩振动峰,1540cm-1处为脲基的N—H变形振动峰,2948cm-1处为甲基与亚甲基中的C-H伸缩振动峰。

WPU0和WPU3在1750cm-1处均出现C=O的伸缩振动峰。

WPU0和WPU3位于1720cm-1~1690cm-1处的吸收均有较明显的吸收,这表明WPU0和WPU3中存在氨基甲酸酯。

WPU0和WPU3在2270cm-1均未出现—CNO的特征吸收峰,说明—CNO已经完全反应掉。

WPU0相比WPU3在1000cm-1~1100cm-1的吸收峰明显增宽增强,为Si—O—Si伸缩振动与C—O—C伸缩振动的结果,同时WPU3在1260cm-1出现了归属Si—CH3的对称弯曲振动峰,说明三元共聚硅油成功接入WPU链段中。

可降解医用高分子材料一直是临床研究的热点。

医用非降解聚氨酯具有良好的生物相容性及生物安全性,在临床医学上应用多年。

[13]将可降解软段应用到聚氨酯材料中,并结合聚氨酯的分子设计,综合调控可降解聚氨酯的力学性能与降解特性已经成为新型可降解医用材料的研究热点。

[14]

何显运[15]课题组以赖氨酸二异氰酸乙酯为硬段,聚己内酯为软段,具有药理活性的异山梨醇为扩链剂的新型功能性医用可降解聚氨酯,并对该功能性聚氨酯的分子结构、分子量及其分布、结晶性能、热性能、力学性能、酶解性能及其生物相容性进行了研究。

其中,用傅里叶红外光谱仪进行红外光谱全反射测试。

图4可降解PU的红外光谱图。

图4为可降解PU的红外谱图。

在3337cm-1处存在一很弱的峰,该峰主要对应于端基-OH伸缩振动的吸收峰,1722cm-1为酯基上的C=O吸收峰,1531cm-1为特征谱带δN-H+νC-N,这与典型的聚酯型聚氨酯的红外光谱相符合[16],说明生成的是聚氨酯。

在图中没有看到异氰酸酯基团的吸收峰,表明异氰酸酯已经反应完全,得到的聚氨酯为端羟基的聚氨酯。

3.3聚氨酯弹性体

所谓弹性体是指玻璃化温度低于室温,扯断伸长率>5%,外力撤除后复原性比较好的高分子材料。

聚氨酯弹性体是弹性体中比较特殊的一大类,其原材料品种繁多,配方多种多样,可调范围很大。

聚氨酯(PU)弹性体是一种由软段和硬段组成的嵌段共聚物,软段一般由低聚物多元醇柔性链段构成,其玻璃化转变温度(Tg)通常低于室温,为无规卷曲状态;硬段由异氰酸酯及小分子扩链剂构成,链段僵硬,常温成棒状[17]。

PU的阻尼性能主要体现在Tg区域宽度和tanδ大小,tanδ>0.3的有效阻尼区在50℃以上才具有实际的应用价值。

温域范围越宽,且与使用环境温度相符合,tanδ值越高,阻尼性能越好。

通过改变软硬段种类和比例,可以调节PU弹性体的阻尼性能[18]。

张晓蕾[19]课题组将聚醚和聚酯的特性相结合,采用分子中含有醚基的丙氧基新戊二醇(PONPG)与丁二酸(SA)、己二酸(AA)反应合成了聚丁二酸丙氧基新戊二醇酯(PNPS)和聚己二酸丙氧基新戊二醇酯(PNPA),然后制备了聚醚酯型PU弹性体,使得Tg区域向低温方向移动,并对其结构进行了表征。

其中,利用傅里叶变换红外光谱仪,采用衰减全反射(ATR)模式,对其分子结构进行红外分析。

(图5)

图5PONPG、PNPS和PU的红外光谱图。

图5是PONPG、PNPS和PU的红外光谱图。

3450cm-1是端羟基-OH的特征吸收峰,PONPG聚合反应后为PNPS,相对分子质量增大,羟值降低。

在FT-IR谱图中,该峰的强度也明显降低。

PU的FT-IR谱中-OH反应完全,在3350cm-1处出现了已形成氢键的-NH-的特征吸收峰,聚醚酯型PU的氢键包括硬段之间形成的氢键以及硬段和软段中极性结构形成的部分氢键。

此外,2877cm-1和2965cm-1出现的肩峰是甲基、亚甲基中C-H的对称和不对称伸缩振动峰。

1730cm-1和1100cm-1分别是酯基中C=O的伸缩振动吸收峰和醚基中C-O-C的不对称伸缩振动峰。

1527cm-1是PU中异氰酸酯结构引入的苯环的特征峰[20]。

3.结语

聚氨酯综合性能优良,有着广泛的应用,新的性能和新的应用方向也正在被进一步发现和拓展。

[21-26]红外光谱作为一种重要的分析与表征方法,是聚氨酯合成与改性中不可或缺的确定结构的重要方法。

当然,很多时候,仅凭一种或几种分析技术并不能得出正确可靠的结论。

只有综合运用不同的分析技术,概括和相互印证不同分析技术的试验结果,才能对一个复杂未知样品提供准确可靠的分析结果。

[27]所以,将红外光谱与更多的分析方法联合利用,才能反映出样品更加详细的信息,为聚氨酯的合成与改性,为科研过程中体系的分析,提供有力的表征手段。

参考文献

1.StuartB.Infraredspectroscopy[M].JohnWiley&Sons,Inc.,2005.

2.RaoCNR.Chemicalapplicationsofinfraredspectroscopy[J].1963.

3.李晓强,张德莉,王婷,等.不同产地泽漆傅里叶变换红外光谱(FTIR)指纹图谱分析[J].中国医院药学杂志,2015,35(5):

421-424.

4.褚小立,陆婉珍.近五年我国近红外光谱分析技术研究与应用进展[J].光谱学与光谱分析,2014,10:

002.

5.LemosVA,SantosMS,SantosES,etal.Applicationofpolyurethanefoamasasorbentfortracemetalpre-concentration—Areview[J].SpectrochimicaactapartB:

Atomicspectroscopy,2007,62

(1):

4-12.

6.李卓汉,彭长华.水性聚氨酯胶粘剂的研究及应用[J].河北化工,2007,30(9):

6-9.

7.陈亚,江滨,曾元儿.红外光谱在中药鉴别中的应用[J].广州中医药大学学报,2004,21(3):

237-240.

8.王建龙,王正祥,薛继武.聚酯型水性聚氨酯的制备与表征[J].湖南工业大学学报,2013,27

(2):

11-15.

9.刘建雄,张保玲,白国宝,等.国内水性聚氨酯胶粘剂产品及应用现状[J].中国胶粘剂,2005,14(12).

10.LinY,ZhouY,XuC,etal.Studyonsynthesisandthickeningpropertyofhyperbranchedwaterbornepolyurethane[J].ProgressinOrganicCoatings,2013,76(10):

1302-1307.

11.任龙芳,郭子东,王学川.PAMAM型树枝状水性聚氨酯的合成及表征[J].功能材料,2015

(1):

1061-1065.

12.刘海艳,徐成书,邢建伟,等.聚酯型可降解水性聚氨酯的合成及表征[J].西安工程大学学报,2014,28(4):

413-417.

13.SzycherM,PoirierVL,DempseyDJ.Developmentofanaliphaticbiomedical-gradepolyurethaneelastomer[J].JournalofElastomersandPlastics,1983,15

(2):

81-95.

14.EglinD,GradS,GogolewskiS,etal.Farsenol‐modifiedbiodegradablepolyurethanesforcartilagetissueengineering[J].JournalofBiomedicalMaterialsResearchPartA,2010,92

(1):

393-408.

15.何显运,王迎军,吴刚.功能性LDI硬段医用可降解聚氨酯的合成与性能[J].高分子材料科学与工程,2013,29(3):

22-25.

16.GornaK,GogolewskiS.Invitrodegradationofnovelmedicalbiodegradablealiphaticpolyurethanesbasedonϵ-caprolactoneandPluronics®withvarioushydrophilicities[J].PolymerDegradationandStability,2002,75

(1):

113-122.

17.聚氨酯树脂及其应用[M].化学工业出版社,2002.

18.ZiaKM,BarikaniM,BhattiIA,etal.Synthesisandthermomechanicalcharacterizationofpolyurethaneelastomersextendedwithα,ω‐alkanediols[J].Journalofappliedpolymerscience,2008,109(3):

1840-1849.

19.张晓蕾,周海军,陈孝起,等.聚醚酯型聚氨酯弹性体的结构与阻尼性能关系[J].高分子材料科学与工程,2014,6:

013.

20.聚合物结构分析[M].科学出版社,2004.

21.KirschbaumS,LandfesterK,TadenA.UniqueCuringPropertiesthroughLivingPolymerizationinCrosslinkingMaterials:

PolyurethanePhotopolymersfromVinylEtherBuildingBlocks[J].AngewandteChemieInternationalEdition,2015,54(19):

5789-5792.

22.KanjwalMA,BarakatNAM,ChronakisIS.PhotocatalyticdegradationofdairyeffluentusingAgTiO2nanostructures/polyurethanenanofibermembrane[J].CeramicsInternational,2015.

23.ClaresME,GuerreroMG,García-GonzálezM.CadmiumremovalbyAnabaenasp.ATCC33047immobilizedinpolyurethanefoam[J].InternationalJournalofEnvironmentalScienceandTechnology,2015,12(5):

1793-1798.

24.SeptevaniAA,EvansDAC,ChaleatC,etal.Asystematicstudysubstitutingpolyetherpolyolwithpalmkerneloilbasedpolyesterpolyolinrigidpolyurethanefoam[J].IndustrialCropsandProducts,2015,66:

16-26.

25.LombardoVM,DhulstEA,LeitschEK,etal.CooperativeCatalysisofCyclicCarbonateRingOpening:

ApplicationTowardsNon‐IsocyanatePolyurethaneMaterials[J].EuropeanJournalofOrganicChemistry,2015,2015(13):

2791-2795.

26.NanclaresJ,PetrovićZS,JavniI,etal.Segmentedpolyurethaneelastomersbynonisocyanateroute[J].JournalofAppliedPolymerScience,2015,132(36).

27.朱雪荣.综合运用当代多种仪器分析技术剖析一种聚氨酯产品[J].理化检验(化学分册),2014,10:

022.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学案例设计

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1