水处理污水厂实习设计.docx

上传人:b****9 文档编号:23411567 上传时间:2023-05-16 格式:DOCX 页数:46 大小:42.29KB
下载 相关 举报
水处理污水厂实习设计.docx_第1页
第1页 / 共46页
水处理污水厂实习设计.docx_第2页
第2页 / 共46页
水处理污水厂实习设计.docx_第3页
第3页 / 共46页
水处理污水厂实习设计.docx_第4页
第4页 / 共46页
水处理污水厂实习设计.docx_第5页
第5页 / 共46页
点击查看更多>>
下载资源
资源描述

水处理污水厂实习设计.docx

《水处理污水厂实习设计.docx》由会员分享,可在线阅读,更多相关《水处理污水厂实习设计.docx(46页珍藏版)》请在冰豆网上搜索。

水处理污水厂实习设计.docx

水处理污水厂实习设计

东华理工大学

 

课程设计

题目:

啤酒生产废水处理厂设计

 

院部水资源与环境工程学院

专业班级环境工程

学生姓名宁文识

学号1020320132

指导教师王学刚(副教授)

 

二O一三年十二月二十日

第6章相关问题的讨论..............................................................................................................41

第7章主要参考文献...................................................................................................................43

第8章小结....................................................................................................................................44

 

第1章总论

“七五”以来,我国对啤酒废水的处理工艺和技术进行了大量的研究和探索,特别是轻工业系统的设计院和科研单位,对啤酒废水的处理进行了各方面的试验、研究和实践,取得了行之有效的成功经验,逐渐形成了以生化为主、生化与物化相结合的处理工艺。

生化法中常用的有活性污泥法、生物膜法、厌氧与好氧相结合法、水解酸化与SBR相组合等各种处理工艺。

这些处理方法与工艺各有其特点和不足之处,但各自都有较为成功的经验。

目前还有不少新的处理方法和工艺优化组合正在试验和研究,有的已取得了理想的成效,不久将应用于实践中。

 80年代以来,我国啤酒工业得到迅速发展,到目前我国啤酒生产厂已有800多家,据1996年统计我国啤酒产量达1650万t,既成为世界啤酒生产大国,又成为较高浓度有机物污染大户,啤酒废水的排放和对环境的污染已成为突出问题,引起了各有关部门的重视。

啤酒废水主要来自麦芽车间(浸麦废水),糖化车间(糖化,过滤洗涤废水),发酵车间(发酵罐洗涤,过滤洗涤废水),灌装车间(洗瓶,灭菌废水及瓶子破碎流出的啤酒)以及生产用冷却废水等。

该废水中主要含糖类,醇类等有机物,有机物浓度较高,虽然无毒,但易于腐败,排入水体要消耗大量的溶解氧,对水体环境造成严重危害。

啤酒废水的水质和水量在不同季节有一定差别,处于高峰流量时的啤酒废水,有机物含量也处于高峰。

鉴于啤酒废水自身的特性,啤酒废水不能直接排入水体,据统计,啤酒厂工业废水如不经处理,每生产100吨啤酒所排放出的BOD值相当于14000人生活污水的BOD值,悬浮固体SS值相当于8000人生活污水的SS,其污染程度相当严重。

基于水污染的危害性和严重性,以保护环境为宗旨,以达到国家废水排放标准为目的来设计啤酒废水处理工艺是啤酒生产厂废水处理部门一项刻不容缓的重任!

 

-1-

第1节设计任务和内容

一、设计题目

啤酒生产废水处理厂设计

二、设计任务

根据规划和所给的其它原始资料,设计污水处理厂,具体内容包括:

(1)确定污水处理厂的工艺流程,选择处理构筑物并通过计算确定其尺寸;

(2)污水厂的工艺平面布置图,内容包括:

标出水厂的范围、全部处理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性;

(3)污水厂工艺流程高程布置,表示原水、各处理构筑物的高程关系、水位高度以及污水厂排放口的标高;

(4)按施工图标准画出主要生物处理构筑物(一个即可)的平面、立面和剖面图;

(5)按扩大初步设计的要求,画出沉淀池的工艺设计图,包括平面图、纵剖面及横剖面图;

(6)编写设计说明书、计算书。

 

第2节基础资料

一、设计资料

1.基本情况

某啤酒厂年产啤酒20万吨。

啤酒通常以麦芽和大米为原料,经制麦芽、糖化、发酵、后处理等工艺酿制而成,整个工艺的每个环节均有废水产生。

2.设计依据

⑴废水水量及水质:

-2-

出水水量:

10000m3/d

COD≤2500mg/L

BOD5≤1100mg/L

SS≤400mg/L

pH:

7.5~9.4

水温为常温。

2)气象水文资料:

风向:

夏季东南风为主

冬季西北风为主

气温:

年平均气温:

8℃

最高气温:

38℃

最低气温:

-23℃

冻土深度:

80cm

地下水位:

5m

地震裂度:

6级

地基承载力:

各层均在120Kpa以上

3)拟建污水处理厂的场地为60×100平方米的平坦地,位于主厂区的南方。

啤酒生产车间排出的污水可自流到污水厂边的集水池(V=200m3,池底较污水厂地平面低3.00m)。

接纳管道管底标高比污水厂地平面低3米。

(3)处理后出水水质要求

处理后水质要求:

COD≤150mg/L

BOD5≤60mg/L

SS≤200mg/L

pH:

6~9

 

-3-

第2章污水处理工艺流程说明

工艺选择的原因,工艺流程图,该工艺原理

本设计采用人工清渣格栅。

由于设计水量较少,故格栅直接安置于排水渠道中。

啤酒废水先经过中格栅去除大杂质后进入集水池,用污水泵将废水提升至水力筛,然后进入调节池进行水质水量的调节。

进入调节池前,根据在线PH计的PH值用计量泵将酸碱送入调节池,调节池的PH值在6.5~7.5之间。

调节池中出来的水用泵连续送入UASB反应器进行厌氧消化,降低有机物浓度。

厌氧处理过程中产生的沼气被收集到沼气柜。

UASB反应器内的污水流入SBR池中进行好氧处理,而后达标出水。

来自UASB反应器、SBR反应池的剩余污泥先收集到集泥井,在由污泥提升泵提升到污泥浓缩池内被浓缩,浓缩后进入污泥脱水机房,进一步降低污泥的含水率,实现污泥的减量化。

污泥脱水后形成泥饼,装车外运处置。

本设计的方案确定:

研究表明,UASB+SBR法成功处理高浓度啤酒废水的关键是培养出沉降性能良好的厌氧颗粒污泥。

颗粒污泥的形成时厌氧细菌群-4-

不断繁殖,积累结果,较多的污泥负荷有利于细菌获得充足的营养基质,故对颗粒污泥的形成和发展具有决定性的促进作用;适当高的水利负荷将长生污泥的水利筛选,淘汰沉降性能差的絮体污泥而留下沉降性能好的污泥同时产生剪切力,使污泥不对流旋转,有利于丝状菌相互缠绕成球。

此外,一定的进水碱度也是颗粒污泥形成的必要条件,因为厌氧生物的生长要求适当高的碱度,例如:

产甲烷细菌生长的最适宜PH值为6.8~7.2。

一定的碱度既能维持细菌生长所需的PH值,又能保证足够的平衡缓冲能力。

由于啤酒废水的碱度一般为500~800mgL-1(以CaCO3计),碱度不足,所以需投加姑爷碳酸钠或氧化钙加以补充。

应该指出,啤酒废水中的乙醇是一种有效的颗粒化促进剂,它为UASB的成功运行提供了有利的条件。

 

总之,UASB+SBR法具有效能高,处理费用低,电耗省,投资少,占地面积小等一系列优点,很适用于高浓度啤酒废水的治理。

其不足之处是工艺先进,因此对管理人员的素质要求较高。

 

-5-

第3章处理构筑物设计计算

第1节格栅和泵房

3.1.1格栅

(一)、格栅的作用

格栅由一组平行的金属栅条或筛网制成,安装在废水渠道的进口处,用于截留较大的悬浮物或漂浮物,主要对水泵起保护作用,另外可减轻后续构筑物的处理负荷。

(二)、设计参数

取中格栅;栅条间隙b=25mm;

栅前水深h=0.4m;过栅流速v=0.9m/s;

安装倾角α=60°;设计流量=Q=10000m3/d=0.116m3/s

(三)、设计计算

3.1格栅设计计算草图

-6-

1栅条间隙数(n)

式中:

Q-------------设计流量,m3/s

α-------------格栅倾角,度

b-------------栅条间隙,m

h-------------栅前水深,m

v-------------过栅流速,m/s

=11.99

取n=12条

2栅槽有效宽度(B)

设计采用φ20圆钢为栅条,即s=0.02m

B=S(n-1)+bn

式中:

S--------------格条宽度,m

n--------------格栅间隙数

b--------------栅条间隙,m

B=0.02×(12-1)+0.01×12=0.52

3进水渠道渐宽部分长度(l1)

设进水渠道内流速为0.9m/s,则进水渠道宽===0.32m

渐宽部分展开角取为20°

则l1=

式中:

B--------------栅槽宽度,m

B1--------------进水渠道宽度,m

-7-

--------------进水渠展开角度

l1==

4栅槽与出水渠道连接处的渐窄部分长度(l2)

l2=l1/2=0.28/2=0.14m

5过栅水头损失(h1)

取k=3,β=2.42(栅条断面为矩形),v=0.9m/s

h1=

式中:

k--------系数,水头损失增大倍数

β--------系数,与断面形状有关

S--------格条宽度,m

b--------栅条净隙,mm

v--------过栅流速,m/s

α--------格栅倾角度

h1==0.2m

6栅槽总高度(H)

取栅前渠道超高h2=0.5m

栅前槽高H1=h+h2=0.9m

则总高度H=h+h1+h2=0.4+0.2+0.5=1.1m

7栅槽总长度(L)

L=l1+l2+0.5+1.0+=0.28+0.14+0.5+1.0+=2.44m

8每日栅渣量(W)

取W1=0.06m3/103m3K2=1.1(由于工业废水日变化系数较小接近于1,故取1.0)

-8-

则W=

式中:

Q-----------设计流量,m3/s

W1----------栅渣量(m3/103m3污水),取0.1~0.01,粗格栅用小值,细格栅用大值,中格栅用中值

=0.1m3/d<0.2m3(可采用人工清渣)

3.1.2污水提升泵房

一、泵房的选择

选择半地下矩形自灌式泵房,这种泵房布置紧凑,占地少,机构省,操作方便。

二、泵房的选择计算

(1)平均流量Q1=/s=0.116=418

418/150=2.8因此取3

150WQ1500-56-55的具体参数

型号

排出口径

流量

扬程

转速

功率

效率

mm

m

kW

%

150QW150-56-55

200

250

40

980

55

70.62

所以应选此型号的水泵

因此,实际工作中应3备1,即4台水泵,3台工作,2台备用。

采用分建式排水泵站,泵位位于标高-1.0m,五台泵平行安装于机器间。

3.1.3细格栅

已知参数:

Q=10000m3/d,Qmax=418m3/h=0.116m3/s。

栅条净间隙为3-10mm,格栅安装倾角600过栅流速一般为0.6-1.0m/s,取V=0.9m/s,栅条断面为矩形,

-9-

选用平面A型格栅,栅条宽度S=0.01m,进行计算栅前水深h取0.4m。

进水渠宽B1=0.4m,其渐宽部分展开角度为200

计算草图同前:

1、栅槽宽度

 

1)栅条的间隙数

由公式n=

式中:

Qmax---最大设计流量m3/s

---格栅倾角(℃)取600

h---栅前水深m取0.4m

-10-

v---过栅流速m/s取0.9m/s

b---栅条间隙m取0.01m

=29.9

取n=30条

(2)栅槽宽度

由公式B=S(n-1)+bn

式中:

B---栅槽宽m

S---栅条宽度m取0.01

b---栅条间隙m0.01

n---栅条间隙数个

B=0.01×(30-1)+0.01×30=0.59

2、渠道宽度

(1)进水渠道渐宽部分的长度l1

进水渠内流速为v进===0.725m/s(0.4-0.8)

l1===0.26m

(2)栅槽与出水渠道连接处的渐窄部分长度l2

l2===0.13m

3、通过格栅的水头损失h1

由公式h1=h0k

式中:

h1---过栅水头损失,m

h0---计算水头损失,h0=(g为重力加速度,m/s2,g=9.8m/s2)

k---考虑污物堵塞,格栅阻力增大系数,一般取3,

-11-

---阻力系数,其值与栅条断面形状有关,当为矩形时,矩形断面时,β=2.42

所以=2.42

h0==2.42=0.087m

故:

h1=0.0873=0.261m

4、栅槽总高度H

由公式H=h+h1+h2

式中:

h2---栅前渠道超高,一般采用0.5m

故:

H=0.4+0.261+0.5=1.161m

5、栅槽总长度L

由公式L=l1+l2+1.0+0.5+

式中:

l1---进水渠道渐宽部分的长度m

l2---栅槽与出水渠道连接处渐窄部分长度m

H1---栅前渠道深m,H1=h+h2

故:

L=0.26+0.13+1.0+0.5+=2.41m

6、每日栅渣量

由公式W=

式中:

W---栅渣量

W1---栅渣量(m3/103m3污水),与栅条间隙有关,取0.1┄0.01,粗格栅用小值、细格栅用大值、中格栅用中值,所以W1取0.1

Kz---工业污水流量变化系数1.0

-12-

代入数值W==1.002m3/d

W〉0.2m3/d,所以宜采用机械清渣

7、选型

根据所计算的格栅宽度和长度,参考平面格栅的基本尺寸选择2台旋转式格栅除污机,另外再选用一台备用。

参数

型号

栅宽度/mm

格栅倾角

栅条间隙/mm

电机功率/KW

XG1000

1000

60°-80°

1-20

1.1

3.2沉淀池

一、调节沉淀池的作用

啤酒废水的水量和水质随时间的变化幅度较大,为了保证后续处理构筑物或设备的正常运行,需对废水的水量和水质进行调节,由于啤酒废水中悬浮物(ss)浓度较高,此调节池也兼具有沉淀池的作用,该池设计有沉淀池的泥斗,有足够的水力停留时间,保证后续处理构筑物能连续运行,其均质作用主要靠池侧的沿程进水,使同时进入池的废水转变为前后出水,以达到与不同时序的废水相混合的目的。

调节池还可用来均衡调节污水水质、水温的变化,降低对生物处理设施的冲击,为使调节池出水水质均匀,防止污染物沉淀,调节池内宜设置搅拌、混合装置。

二、设计参数

水力停留时间T=6h;设计流量Q===,采用机械刮泥除渣。

处理参数如下表。

 

-13-

调节沉淀池进出水水质指标

水质指标

COD

BOD

SS

进水水质(mg/l)

2500

1100

400

去除率(%)

7

7

50

出水水质(mg/l)

2325

1023

200

三、设计计算

调节沉淀池的设计计算草图见下图3.5

 

图3.5调节沉淀池设计计算草图

(一)池子尺寸

池子有效容积为:

V=QT=417×6=2502

取池子总高度H=5.5m,其中超高0.5m,有效水深h=5m,则池面积A=V/h=2502/5=500.4

-14-

池长取L=60m,池宽取B=8m,则池子总尺寸为L×B×H=60×8×5.5=2640

(二)调节池的搅拌器

使废水混合均匀,调节池下设潜水搅拌机,选型QJB7.5/6-640/3-303/c/s1台

(三)理论上每日的污泥量

式中:

Q------------设计流量,/d

C------------进水悬浮物浓度,kg/

C------------出水悬浮物浓度,kg/

P------------污泥含水率,以97%计

------------污泥密度,以1000kg/计

W==67/d

(四)污泥斗尺寸

取斗底尺寸为400×400,污泥斗倾角取50°

则污泥斗的高度为:

h=(4-0.2)×tg50°

=4.529m

污泥斗的容积V2=h2(a12+a1a2+a22)

=×4.592×(82+8×0.4+0.42)

=101.7m3

V=_>W符合设计要求,采用机械泵吸泥

(五)进水布置

进水起端两侧设进水堰,堰长为池长2/3

-15-

3.3UASB反应池的设计计算

一、UASB反应器的作用

UASB,即上流式厌氧污泥床,集生物反应与沉淀于一体,是一种结构紧凑,效率高的厌氧反应器。

它的污泥床内生物量多,容积负荷率高,废水在反应器内的水力停留时间较短,因此所需池容大大缩小。

设备简单,运行方便,勿需设沉淀池和污泥回流装置,不需充填填料,也不需在反应区内设机械搅拌装置,造价相对较低,便于管理,且不存在堵塞问题。

二.UASB反应器的工作原理

UASB,即上流式厌氧污泥床,集生物反应与沉淀于一体,是一种结构紧凑,效率高的厌氧反应器,由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。

在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。

要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。

沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。

沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

它的污泥床内生物量多,容积负荷率高,废水在反应器内的水力停留时间较短,因此所需池容大大缩小。

设备简单,运行方便,勿需设沉淀池和污泥回流装置,不需充填填料,也不需在反应区内设机械搅拌装置,造价相对较低,便于管理,且不存在堵塞问题

-16-

三、设计参数

(一)参数选取

容积负荷(Nv):

4.5kgCOD/(m3·d);

污泥产率:

0.1kgMLSS/kgCOD;

产气率:

0.5m3/kgCOD

 

(二)设计水质(如下表所示)

UASB反应器进出水水质指标

水质指标

COD

BOD

SS

进水水质(mg/l)

2325

1023

200

去除率(%)

75

80

50

出水水质(mg/l)

582

205

100

(三)设计水量

Q=10000m3/d=217m3/h=0.116m3/s

四、设计计算

 

-17-

_EMBEDAutoCAD.Drawing.17___

(一)反应器容积计算

UASB有效容积:

V有效=_EMBEDEquation.3___

式中:

Q-------------设计流量,m3/s

S0-------------进水COD含量,mg/l

Nv-------------容积负荷,kgCOD/(m3·d)

V有效=_EMBEDEquation.3___

=5167

将UASB设计成圆形池子,布水均匀,处理效果好

-18-

取水力负荷q=0.8[m3/(m2·h)]

则反应器表面积A=_EMBEDEquation.DSMT4___=217/0.8=272m2

反应器高度h=_EMBEDEquation.DSMT4___=5167/272=19m

采用4座相同的UASB反应器

      则  A1=_EMBEDEquation.DSMT4___=271/4=68m2

D=_EMBEDEquation.3___

=9.3m

故取D=10m

则实际横截面积为

_EMBEDEquation.DSMT4___=_EMBEDEquation.DSMT4___πD2=_EMBEDEquation.DSMT4___×3.14×102

=78.5m2

实际表面水力负荷为

q1=Q/A

=217/4/78.5

=0.69

q1在0.5—1.5m/h之间,符合设计要求。

(二)配水系统设计计算 

本系统设计为圆形布水器,每个UASB反应器设36个布水点

(1)参数 

每个池子流量:

Q=217/4=54.25m3/h

(2)设计计算

布水系统设计计算草图见下图:

-19-

_EMBEDAutoCAD.Drawing.17___

圆环直径计算:

每个孔口服务面积为:

a=_EMBEDEquation.3___=2.2m2

a在1~3m2之间,符合设计要求

可设3个圆环,最里面的圆环设6个孔口,中间设12个,最外围设18个孔口

1)内圈6个孔口设计

服务面积:

_EMBEDEquation.DSMT4___=6×2.2=13.2m2

折合为服务圆的直径为:

d=_EMBEDEquation.3___=4.1m

-20-

用此直径作一个虚圆,在该圆内等分虚圆面积处设一实圆环,其上布6个孔口,则圆的直径计算如下:

        _EMBEDEquation.3___

则d1=_EMBEDEquation.3___

=_EMBEDEquation.3___

=2.9m

2)中圈12个孔口设计

服务面积:

S2=12×2.2=26.4m2

折合成服务圆直径为:

_EMBEDEquation.3___

=_EMBEDEquation.3___

=7.10m

中间圆环直径计算如下:

_EMBEDEquation.DSMT4___π(7.102-d22)=_EMBEDEquation.DSMT4___S2

则d2=5.8m

3)外圈18个孔口设计

服务面积:

S3=18×2.2=39.6m2

折合成服务圈直径为:

_EMBEDEquation.3___

=10.04m

外圆环的直径d3计算如下:

-21-

_EMBEDEquation.DSMT4___π(10.042-d32)=_EMBEDEquation.DSMT4___S3

则d3=8.69m

(三)三相分离器设计

_三相分离器设计计算草图见下图:

 

图UASB三相分离器设计计算草图

(1)设计说明

三相分离器要具有气、液、固三相分离的功能。

三相分离器的设计主要包括沉淀区、回流缝、气液分离器的设计。

(2)沉淀区的设计

三相分离器的沉淀区的设计同二次沉淀池的设计相同,主要是考虑沉淀区的面积和水深,面积根据废水量和表面负荷率决定。

由于沉淀区的厌氧污泥及有机物还可以发生一定的生化反应产生少量气体,这对固液分离不利,故设计时应满足以下要求:

-22-

1)沉淀区水力表面负荷<1.0m/h

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 工作总结汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1