土木工程外文翻译外文框架.docx
《土木工程外文翻译外文框架.docx》由会员分享,可在线阅读,更多相关《土木工程外文翻译外文框架.docx(6页珍藏版)》请在冰豆网上搜索。
土木工程外文翻译外文框架
4.1INVESTIGATIONOFSTRUCTURALBEHAVIOR
Investigatinghowstructuresbehaveisanimportantpartofstructuraldesign:
itprovidesabasisforensuringtheadequacyandsafetyofadesign,InthissectionIdiscussstructuralinvestigationingeneral.AsIdothroughoutthisbook.Ifocusonmaterialrelevanttostructuraldesigntasks.
PurposeofInvestigation
Moststructuresexistbecausetheyareneeded.Anyevaluationofastructurethusmustbeginwithananalysisofhoweffectivelythestructuremeetstheusagerequirements.
Designersmustconsiderthefollowingthreefactors:
●Functionality.orthegeneralphysicalrelationshipsofthestructure'sform.detail.durability.fireresistance.deformationresistance.andsoon.
●Feasibility.includingcost.availabilityofmaterialsandproducts.andpracticalityofconstruction.
●Safety.orcapacity10resistanticipatedloads.
Means
Aninvestigationofafullydefinedstructureinvolvesthefollowing:
1.Determinethestructure'sphysicalbeing-materials,form,scale.orientation.location.supportconditions,andinternalcharacteranddetail.
2.Determinethedemandsplacedonthestructure-thatis.loads.
3.Determinethestructure'sdeformationlimits.
4.Determinethestructure'sloadresponse-howithandlesinternalforcesandstressesandsignificantdeformations.
5.Evaluatewhetherthestructurecansafelyhandletherequiredstructuraltasks.
Investigationmaytakeseveralforms.Youcan
●Visualizegraphicallythestructure'sdeformationunderload.
●Manipulatemathematicalmodels.
●Testthestructureorascaledmodel,measuringitsresponsestoloads.
Whenprecisequantitativeevaluationsarerequired.usemathematicalmodelsbasedonreliabletheoriesordirectlymeasurephysicalresponses.Ordinarily.mathematicalmodelingprecedesanyactualconstruction-evenofatestmodel.Limitdirectmeasurementtoexperimentalstudiesortoverifyinguntestedtheoriesordesignmethods.
VisualAids
Inthisbook,Iemphasizegraphicalvisualization;sketchesarcinvaluablelearningandproblem-solvingaids.Threetypesofgraphicsaremostuseful:
thefree-bodydiagram.theexaggeratedprofileofaload-deformedstructure.andthescaledpial.
Afree-bodydiagrambinesapictureofanisolatedphysicalclemenIwithrepresentationsofallexternalforces.Theisolatedclementmaybeawholestructureorsomepartofit.
Forexample.Figure4.1ashowsanentirestructure-abeamand-eolumnrigidbent-andtheexternalforces(representedbyarrows).whichincludegravity.wind.andthereactiveresistanceofthesupports(calledthereactions).Note:
Suchaforcesystemholdsthestructureinstaticequilibrium.
Figure4.lbisafree-bodydiagramofasinglebeamfromthebent.Operatingonthebeamaretwoforces:
itsownweightandtheinteractionbetweenthebeamendsandthecolumns10whichthebeamisallached.TheseinteractionsarenotvisibleintheIreebodydiagramofthewholebent.soonepurposeofthediagramforthebeamistoillustratetheseinteractions.Forexample.notethatthecolumnstransmittotheendsofthebeamshorizontalandverticalforcesaswellasrotationalbendingactions.
Figure4.lcshowsanisolatedportionofthebeamlength.illustratingthebeam'sinternalforceactions.Operatingonthisfreebodyarcitsownweightandtheactionsofthebeamsegmentsontheoppositesidesoftheslicingplanes.sinceitistheseactionsthatholdtheremovedportioninplaceinthewholebeam.
Figure4.ld.atinysegment.orparticle.ofthebeammaterialisisolated,illustratingtheinteractionsbetweenthisparticleandthoseadjacenttoit.Thisdevicehelpsdesignersvisualizestress:
inthiscase.duetoitslocationinthebeam.theparticleissubjectedtoabinationofshearandlinearpressionstresses.
Anexaggeratedprofileofaload-deformedstructurehelpsestablishthequalitativenatureoftherelationshipsbetweenforceactionsandshapechanges.Indeed.youcaninfertheformdeformationfromthetypeofforceorstress.andviceversa.
FIGURE4.1Free-bodydiagrams.
Forexample.Figure4.lashows{heexaggerateddeformationofthebentinFigure4.1underwindloading.Notehowyoucandeterminethenatureofbendingactionineachmemberoftheframefromthisfigure.Figure4.2bshowsthenatureofdeformationofindividualparticlesundervarioustypesofstress.
FIGURE4.2Structuraldeformation
Thescaledplotisagraphofsomemathematicalrelationshiporrealdata.Forexample,thegraphinFigure4.3representstheformofadampedibrationofanelasticspring.Itconsistsoftheplotofthedisplacementsagainstelapsedtimet.andrepresentsthegraphoftheexpression.
FIGURE4.3Graphicalplotofadampedcyclicmotion.
Althoughtheequationistechnicallysufficienttodescribethephenomenon,thegraphillustratesmanyaspectsoftherelationship.suchastherateofdecayofthedisplacement.theintervalofthevibration.thespecificpositionatsomespecificelapsedtime.andsoon..
4.2METHODSOFINVESTIGATIONANDDESIGN
Traditionalstructuraldesigncenteredontheworkingstressmethod.amethodnowreferredtoasstressdesignorallowablestressdesign(ASD).Thismethod.whichreliesontheclassictheoriesofelasticbehavior,measuresadesign'ssafetyagainsttwolimits:
anacceptablemaximumstress(calledallowableworkingstress)andatolerableextentofdeformation(deflection.stretch.erc.).Theselimitsrefertoastructure'sresponsetoserviceloads-thatis.theloadscausedbynormalusageconditions.Thestrengthme/hod,meanwhile,measuresadesign'sadequacyagainstitsabsoluteloadlimit-thatis.whenthestructuremustfail.
Toconvincinglyestablishstress.strain.andfailurelimits,testswereperformedextensivelyinthefield(onrealstructures)andlaboratories(onspecimenprototypes.ormodels).Note:
Real-worldstructuralfailuresarestudiedbothforresearchsakeandtoestablishliability.
Inessence.theworkingstressmethodconsistsofdesigningastructuretoworkatsomeestablishedpercentageofitstotalcapacity.Thestrengthmethodconsistsofdesigningastructuretofail.butataloadconditionwellbeyondwhatitshouldexperience.Clearlythestressandstrengthmethodsarcdifferent.butthedifferenceismostlyprocedural.
TheStressMethod(ASD)
Thestressmethodisasfollows:
1.Visualizeandquantifytheservice(working)loadconditionsasintelligentlyaspossible.Youcanmakeadjustmentsbydeterminingstatisticallylikelyloadbinations(i.e,deadloadplusliveloadpluswindload).consideringloadduration.andsoon.
2.Establishstandardstress.stability,anddeformationlimitsforthevariousstructuralresponses-intension.bending,shear,buckling.deflection,andsoon.
3.Evaluatethestructure'sresponse.
Anadvantageofworkingwiththestressmethodisthatyoufocusontheusagecondition(realoranticipated).Theprincipaldisadvantageesfromyourforceddetachmentfromrealfailureconditions-moststructuresdevelopmuchdifferentformsofstressandstrainastheyapproachtheirfailurelimits.
TheStrengthMethod(LRFD)
Thestrengthmethodisasfollows:
1.Quantifytheserviceloads.Thenmultiplythembyanadjustmentfactor'(essentiallyasafetyfactor)toproducethejaclOredload.
2.Visualizethevariousstructuralresponsesandquantifythestructure'sultimate(maximum,failure)resistanceinappropriateterms(resistancetopression,buckling.bending.etc.).Sometimesthisresistanceissubjecttoanadjustmentfactor,calledtheresistancefacror.Whenyouemployloadandresistancefactors.thestrengthmethodisnowsometimescalledfoadandresistancefaaordesign(LRFD)(seeSection5.9).
3.paretheusableresistanceofthestructuretotheultirnatcresistancerequired(aninvestigationprocedure),orastructurewithanappropriateresistanceisproposed(adesignprocedure).
Amajorreasondesignersfavorthestrengthmethodisthatstructuralfailureisrelativelyeasytotest.Whatisanappropriateworkingconditionisspeculation.Inanyevent,thestrengthmethodwhichwasfirstdevelopedforthedesignofreinforcedconcretestructures,isnowlargelypreferredinallprofessionaldesignwork.
Nevertheless,theclassictheoriesofclasticbehaviorstillserveasabasisforvisualizinghowstructureswork.Butultimateresponsesusuallyvaryfromtheclassicresponses,becauseofinelasticmaterials,secondaryeffects,multimoderesponses,andsoon.Inotherwords,theusualprocedureistofirstconsideraclassic,elasticresponse,andthentoobserve(orspeculateabout)whathappensasfailurelimitsareapproached.