电涡流位移传感器设计.docx

上传人:b****7 文档编号:23349762 上传时间:2023-05-16 格式:DOCX 页数:18 大小:482.17KB
下载 相关 举报
电涡流位移传感器设计.docx_第1页
第1页 / 共18页
电涡流位移传感器设计.docx_第2页
第2页 / 共18页
电涡流位移传感器设计.docx_第3页
第3页 / 共18页
电涡流位移传感器设计.docx_第4页
第4页 / 共18页
电涡流位移传感器设计.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

电涡流位移传感器设计.docx

《电涡流位移传感器设计.docx》由会员分享,可在线阅读,更多相关《电涡流位移传感器设计.docx(18页珍藏版)》请在冰豆网上搜索。

电涡流位移传感器设计.docx

电涡流位移传感器设计

传感器课程设计说明书

 

电涡流传感器

 

学院名称:

机械工程学院

专业班级:

学生姓名:

学号:

  

指导教师姓名:

 

2012年1月

目录

摘要2

设计任务书3

电涡流位移传感器设计4

一、总体设计方案4

二、电涡流传感器的基本原理5

2.1电涡流传感器工作原理5

2.2电涡流传感器等效电路分析5

2.3电涡流传感器测量电路原理7

三、实验波形及实验数据12

3.1电涡流透射式12

3.2电涡流反射式16

个人小结18

致谢18

 

摘要

随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。

特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。

传感器技术的应用在许多个发达国家中,已经得到普遍重视。

在工程中所要测量的参数大多数为非电量,促使人们用电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,研究如何能正确和快速的非电量技术。

电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。

关键词:

电涡流式传感器传感器技术电量非电量

Abstract:

Withmodernmeasurement,controlboxofautomationtechnologydevelopment,thesensortechnologyismoreandmoreattentionbypeople.Especiallyinrecentyears,duetothedevelopmentofscienceandtechnologyandecologicalbalancetheneed,sensorinvariousfieldsarealsoincreasinglysignificantrole.Thesensortechnologyapplicationinmanydevelopedcountries,hasbeenpaidattentionto.Intheprojectinmeasuredparametersforthemostpower,thepowertourgepeopletoapproachtothepower,andtheresearchmethodoftheelectricitymeasurementofelectricinstruments,tostudyhowtocorrectandfastthepowertechnology.Theeddycurrentsensorhasbecometheelectricalmeasurementtechnologyisveryimportantmeansofdetection,widelyusedinengineeringsurveyandscientificexperiments.

Keywords:

Eddycurrentsensor,sensortechnology,non-powerelectricalmeasurementtechniques,

 

设计任务书

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。

它是一种非接触的线性化计量工具。

电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。

在工程测量和科学实验中得到广泛应用。

设计要求:

本次课程设计要求利用涡流转换器和一个电涡流传感器用反射式测量位移。

并分析其工作原理,电路组成。

设计原理:

有法拉第电磁感应定律,交变电流在线圈中产生交变磁场,靠近被测导体是产生交变电流。

导体有交变电流产生交变磁场。

从而反馈给传感器,削弱传感器的磁场今儿改变电流。

再由测量电路输出变化量。

设计所需元件!

电涡流传感器,涡流转换电路,示波器,导线若干,铜板若干。

 

电涡流位移传感器设计

一、总体设计方案

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。

它是一种非接触的线性化计量工具。

电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。

电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点。

根据下面的组成框图,构成传感器。

根据组成框图,具体说明各个组成部分的材料:

(1)敏感元件:

传感器探头线圈是通过与被测导体之间的相互作用,从而产生被测信号的部分,它是由多股漆包铜线绕制的一个扁平线圈固定在框架上构成,线圈框架的材料是聚四氟乙烯,其顺耗小,电性能好,热膨胀系数小。

(2)传感元件:

前置器是一个用环氧树脂灌封并带有导线的装置,测量电路完全装在前置器中。

(3)测量电路:

是由涡流传感器构成,将测量信息转换为直流电量输出。

本电路采用西勒振荡电路产生振荡频率,在经过滤波产生直流电量。

二、电涡流传感器的基本原理

2.1电涡流传感器工作原理

根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流i1时,线圈周围空间必然产生正弦交变磁场H1,它使置于此磁场中的被测金属导体表面产生感应电流,即电涡流,如图2-2中所示。

与此同时,电涡流i2又产生新的交变磁场H2;H2与H1方向相反,并力图削弱H1,从而导致探头线圈的等效电阻相应地发生变化。

其变化程度取决于被测金属导体的电阻率ρ,磁导率μ,线圈与金属导体的距离x,以及线圈激励电流的频率f等参数。

如果只改变上述参数中的一个,而其余参数保持不变,则阻抗Z就成为这个变化参数的单值函数,从而确定该参数的大小。

电涡流传感器的工作原理,如图2-2所示:

2.2电涡流传感器等效电路分析

为了便于分析,把被测金属导体上形成的电涡流等效成一个短路环中的电流,这样就可以得到如图2-3所示的等效电路。

图中R1,L1为传感器探头线圈的电阻和电感,短路环可以认为是一匝短路线圈,其中R2,L2为被测导体的电阻和电感。

探头线圈和导体之间存在一个互感M,它随线圈与导体间距离的减小而增大。

U1为激励电压,根据基尔霍夫电压平衡方程式,上图等效电路的平衡方程式如下:

经求解方程组,可得I1和I2表达式:

由此可得传感器线圈的等效阻抗为:

从而得到探头线圈等效电阻和电感。

通过式(2-4)的方程式可见:

涡流的影响使得线圈阻抗的实部等效电阻增加,而虚部等效电感减小,从而使线圈阻抗发生了变化,这种变化称为反射阻抗作用。

所以电涡流传感器的工作原理,实质上是由于受到交变磁场影响的导体中产生的电涡流起到调节线圈原来阻抗的作用。

因此,通过上述方程组的推导,可将探头线圈的等效阻抗Z表示成如下一个简单的函数关系:

其中,x为检测距离;μ为被测体磁导率;ρ为被测体电阻率;f为线圈中激励电流频率。

所以,当改变该函数中某一个量,而固定其他量时,就可以通过测量等效阻抗Z的变化来确定该参数的变化。

在目前的测量电路中,有通过测量ΔL或ΔZ等来测量x,ρ,μ,f的变化的电路。

2.3电涡流传感器测量电路原理

电涡流传感器常用的测量电路有电桥电路和谐振电路,阻抗Z的测量一般用电桥,电感L的测量电路一般用谐振电路,其中谐振电路又分为调频式和调幅式电路。

本设计采用涡流转换器,其工作原理是谐振式调幅电路。

涡流转换器等效电路图图1

从涡流转换的等效电流图可分析出线圈震荡电流有涡流转换器提供。

是由其中的西勒振荡电路提供震荡电流。

下图为西勒振荡电路。

西勒震荡电路图图2

西勒振荡器是一种改进型的电容反馈振荡器,它是克拉波电路的改进电路。

这种电路频率稳定性高。

因为可通过C4改变振荡频率,且接入系数不受C4影响,所以在整个波段中振荡

振幅比较平稳。

真两点使西勒电路的频率能在比较宽的范围内调节。

西勒振荡电路的频率为

式中,

其中,

时,振荡频率为

与受输入输出电容(包括闲散电容)影响的

无关,因此提高了振荡频率的稳定性。

西勒振荡电路的振荡频率可以通过改变

来调整。

比克拉波电路取值大!

故频率覆盖系数大,易调整,频率稳定度高,实际应用较多。

西勒振荡等效电路图图3

上图为在实际应用中的西勒电路改进型,在实际应用中可用可调电感,而可调电容换成固定电容。

在大多数电视机中大多采用西勒振荡电路。

此时的振荡频率为

此时其振荡波形,有实验可得,其电压峰峰值为1.8V,周期为21ms如图所示

西勒振荡电路输出波形图4

因此电路图中的可调电感即为涡流转换器中所接的电涡流传感器。

所以其振荡频率即为西勒振荡电路的振荡频率。

下图为传感器的振荡波形,起电压峰峰值为1.8V,周期为21ms,

传感器两端输出波形图5

其叠加电路图如下图所示,

西勒振荡波形与传感器振荡波形叠加图图6

由上图可以看出其振荡频率大致相同,当其幅值不同。

由涡流转换器电路图可知,西勒电路产生的电流从振荡器输出端输出后,经过上下两部分滤波电路,滤去交流。

剩下直流电流从转换器的输出端输出。

上部滤波电路为

LC滤波电路1图7

直流电由输入端进入后经由LC低通滤波器后由输出端输出直流分量。

下部LC滤波器在二极管之后如图所示,

LC滤波电路2图8

由于二极管有单向导通性,因此有部分正弦波经由二极管,而形成半波正弦波。

在通过下部LC低通滤波器滤去交流分量。

从而输出直流分量。

三、实验波形及实验数据

电涡流传感器有传感器有两种结构类型,分别为透射式和反射式。

即透射试验和反射实验

3.1电涡流透射式

这种类型与反射式主要不同在于它采用低频激励,贯穿深度大,适用于测量金属材料的厚度。

下图为其工作示意图,

透射式电涡流传感器工作原理图图9

传感器由发射线圈L1和接受线圈L2组成,它们分别位于被测金属板的两侧。

当低频激励电压加到线圈L1两端时,将在L2两端产生感应电压。

若两线圈之间无金属导体,L1的磁场就能直接贯穿L2,这时电压达到最大。

当有金属板后,其产生的涡流削弱了L1的磁场,造成电压下降。

金属板厚度越大,涡流损耗的就越大,电压也就越小。

因此可用电压大小反应金属般的厚度!

而且对于不同材质的特性不通所得的实验现象也不相同。

以下为高频低频和有无金属板的实验波形对比。

在低频激励下无金属导体时传感器两端的波形为下图所示,

低频无导体波形图10

低频有导体的透射波形如下图所示,

低频有导体波形图11

在高频激励下无导体是传感器两端输出波形,如下图所示

高频无导体波形图12

高频有导体时传感器两端输出波形如下图所示

高频有导体波形图13

由图9-12分析可知当传感器激励频率升高后其透射后的电压增大了,但从低频到高频过程中再有无导体的情况下,电压的下降幅度也不同!

在高频境况下电压下降幅度明显大于低频是电压下降到幅度!

说明导体对涡流传感器在高频时吸收率更高,更有利于低频是的磁场通过。

3.2电涡流反射式

反射式中,变间隙是最常用的的一种结构式。

他的结构简单,由一个扁平线圈固定在框架上构成。

线圈用高强度漆包铜线或银线绕制(高温时也采用钨线),用粘合剂在框架端部或绕制在框架槽内,其结构示意图如图所示,

电涡流传感器结构图图14

线圈框架应采用损耗小、电性能好、热膨胀系数小的材料,常用高频陶瓷、聚酰亚胺、环氧玻璃纤维等。

由于激励频率较高,对所用的电缆与插头也要充分重视。

对于电涡流传感器线圈外径大,线性范围也就大,但灵敏度低;反之线圈外径小,灵敏度高,但线性范围小。

除此之外也有加入不加入铁心之分加入铁心可以感受较弱的磁场。

对被测导体的大小和形状也与灵敏度密切相关。

而且除反射式外还有变面积式和螺管式两种。

下面对变间隙式的电涡流传感器进行试验测量,并记录数据,在进行数据处理,

 

位移mm

0

0.5

1

1.5

2

2.5

3

3.5

4

电压v

0

0

0.8

1.64

2.38

3.07

3.7

4.27

4.78

位移mm

4.5

5

5.5

6

6.5

7

7.5

8

8.5

电压v

5.22

5.61

5.94

6.21

6.43

6.61

6.75

6.85

6.94

位移mm

9

10

11

12

13

14

15

16

电压v

7.01

7.12

7.20

7.27

7.31

7.36

7.39

7.41

通过matlab拟合数据找出其最适合测量的线性区间。

下图为使用matlab拟合直线数据图

变间隙反射式试验数据拟合图图15

个人小结

在这几天的课程设计中我学到了许多,既有有因无从下手和失败而迷茫和沮丧,也有获得成功后的沾沾自喜。

而且发现自己的知识储备实在太少。

在课程设计中每天不断的查资料分析电路,要找出试验电路和经典电路之间的共性,还要通过变换把复杂的电路变换成熟知的基本电路,尤其是在西勒振荡器的查找时,面对一个陌生的电路根本无从下手。

还是鲍老师指导我去图书馆查找信号发生电路的相关书籍。

才找到了类似的电路,在经过自己的认真分析,最终确定了它是西勒振荡电路的衍生版本。

课程设计真的不容易。

对我的提高确实很大。

而且在制作过程中,团队的力量也是很大的!

一个号的团队不只需要一个好的指挥着,更需要勤恳的队员。

大家勤恳的工作才能完成课程设计。

致谢

在设计完成之时,我要衷心的感谢我们鲍丙豪老师。

在整个设计过程中,没当遇到困难的时候,总会想起鲍老师。

向他提出各种问题,没词他都耐心的解答,并指出解决方法。

他不但提出来要求同时也给我们指出了思路。

这里还要感谢我的队友火哥,小米,杨明鹏,吕振和小白。

是我们齐心协力,才能完成课程设计。

遇到困难一起探讨。

但免不了有打酱油的。

但主力之中是有的。

在此我表示真诚的感谢。

参考文献:

【1】贾伯年传感器技术东南大学出版社2007

【2】林志琦信号发生电路原理与实用设计人民邮电出版社2010

【3】ArthurB.Williams著宁彦卿译电子滤波器设计科学技术出版社2008

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1