太阳能学习资料.docx

上传人:b****1 文档编号:23254317 上传时间:2023-05-15 格式:DOCX 页数:46 大小:84.37KB
下载 相关 举报
太阳能学习资料.docx_第1页
第1页 / 共46页
太阳能学习资料.docx_第2页
第2页 / 共46页
太阳能学习资料.docx_第3页
第3页 / 共46页
太阳能学习资料.docx_第4页
第4页 / 共46页
太阳能学习资料.docx_第5页
第5页 / 共46页
点击查看更多>>
下载资源
资源描述

太阳能学习资料.docx

《太阳能学习资料.docx》由会员分享,可在线阅读,更多相关《太阳能学习资料.docx(46页珍藏版)》请在冰豆网上搜索。

太阳能学习资料.docx

太阳能学习资料

太阳能学习资料!

(精修版)

一、基本知识

1000纳米(nm)=1微米(μm)

1000微米(μm)=1毫米(mm)

1000毫米(mm)=1米(m)

 太阳能电池是一种能将光能直接转换成电能的半导体器件,其结构如图所示。

它实质上是一个大面积的半导体PN结。

硅光电池的基体材料为一薄片P型单晶硅,其厚度在0.44mm以栅状电极下,在它的表面上利用热扩散法生成一层N型受光层,基体和受光层的交接处形成PN结。

在N型受光层上制作有栅状负电极,另外在受光面上还均匀覆盖有抗反射膜,它是一层很薄的天蓝色一氧化硅膜,可以使电池对有效人射光的吸收率达到90%以上,并使硅光电池的短路电流增加25%-30%。

   

 

硅光电池的工作原理是光生伏特效应。

当光照射在硅光电池的PN结区时,会在半导体中激发出光生电子一空穴对。

PN结两边的光生电子一空穴对,在内电场的作用下,属于多数载流子的不能穿越阻挡层,而少数载流子却能穿越阻挡层。

结果,P区的光生电子进入N区,N区的光生空穴进入p区,使每个区中的光生电子一空穴对分割开来。

光生电子在N区的集结使N区带负电,光生电子在p区的集结使P区带正电。

P区和N区之间产生光生电动势。

当硅光电池接人负载后,光电流从P区经负载流至NE,负载中即得到功率输出。

 

晶体硅太阳电池工作原理及示意图太阳辐射能光子转变为电能的过程,叫“光生伏打效应”,人们把能产生“光生伏打效应”的器件称为“光伏器件”;因为半导体P-N结器件在阳光下的光电转换效率最高,所以通常把这类光伏器件称为“太阳电池”。

晶体硅太阳电池是指:

单晶硅片为基体的单晶硅太阳电池与多晶硅晶片为基体的多晶硅太阳电池的总称。

[font=宋体][size=10.5pt]    晶体硅太阳电池是具有P-N结结构的半导体器件。

太阳电池吸收太阳光能后,激发产生电子、空穴对,电子、空穴对被半导体内部P-N结自建电场分开,电子流入n区,空穴流入p区,形成光生电场。

将晶体硅太阳电池的正、负电极与外接电路连接,外接电路中就有光[font=宋体][size=10.5pt]生电流流过。

制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多;目前技术最成熟,并最具有商业价值的太阳电池要算晶体硅太阳电池,即单晶硅太阳电池和多晶硅太阳电池的统称,商品化太阳电池市场80%是晶体硅太阳电池。

太阳电池发电直接利用取之不竭、无处不有的太阳能,不消耗工质、不排放废物、无转动、无噪声,是一种理想的清洁安全新能源。

使用上具有结构简单、易安装、建设周期短,维护简便甚至免维护,应用范围广等优点。

   

 通常将多个太阳电池片串、并联成一定电性能的太阳电池串,封装成具有机械强度的太阳电池组件。

太阳电池方阵是太阳电池的组合体,将多个组件固定在支架上,用导线连在一起,产生系统所需的电压和电流。

  太阳能光伏

  光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。

由于没有活动的部分,故可以长时间操作而不会导致任何损耗。

简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。

光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。

近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

  太阳热能

  现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。

除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。

【利用太阳能的历史】  据记载,人类利用太阳能已有3000多年的历史。

将太阳能作为一种能源和动力加以利用,只有300多年的历史。

真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。

20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。

近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。

该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。

在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。

这些动力装置几乎全部采用聚光方式采集阳光,发动机功率不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。

20世纪的100年间,太阳能科技发展历史大体可分为七个阶段。

  第一阶段(1900~1920年)

  在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。

建造的典型装置有:

1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:

7.36kW;1902~1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。

  第二阶段(1920~1945年)

  在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935~1945年)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。

  第三阶段(1945~1965年)

  在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少,呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。

在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:

1945年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础;1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件。

此外,在这一阶段里还有其它一些重要成果,比较突出的有:

1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。

1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨——水吸收式空调系统,制冷能力为5冷吨。

1961年,一台带有石英窗的斯特林发动机问世。

在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。

平板集热器有了很大的发展,技术上逐渐成熟。

太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。

对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。

  第四阶段(1965~1973年)

  这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。

  第五阶段(1973~1980年)

  自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。

其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。

于是,西方一些人惊呼:

世界发生了“能源危机”(有的称“石油危机”)。

这次“危机”在客观上使人们认识到:

现有的能源结构必须彻底改变,应加速向未来能源结构过渡。

从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。

1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。

日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:

太阳房、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。

为实施这一计划,日本政府投入了大量人力、物力和财力。

70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。

一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶,在城市研制开发太阳能热水器,空间用的太阳电池开始在地面应用……。

1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。

这次会议之后,太阳能研究和推广工作纳入了我国政府计划,获得了专项经费和物资支持。

一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。

当时,我国也兴起了开发利用太阳能的热潮。

这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:

  各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。

开发利用太阳能成为政府行为,支持力度大大加强。

国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。

  研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、光解水制氢、太阳能热发电等。

  各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。

例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。

事实上,这一计划后来进行了调整,至今空间太阳能电站还未升空。

  太阳热水器、太阳电池等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想。

  第六阶段(1980~1992年)

  70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。

世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。

导致这种现象的主要原因是:

世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。

受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:

太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。

虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响。

这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。

  第七阶段(1992年~至今)

  由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。

在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》,《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了可持续发展的模式。

这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在一起,使太阳能利用工作走出低谷,逐渐得到加强。

世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确了太阳能重点发展项目。

1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》(1996~2010年),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施。

这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。

1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言》,会上讨论了《世界太阳能10年行动计划》(1996~2005年),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。

这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动,广泛利用太阳能。

1992年以后,世界太阳能利用又进入一个发展期,其特点是:

太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。

通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。

太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。

这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。

尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。

【利弊】  优点:

  

(1)普遍:

太阳光普照大地,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。

  

(2)无害:

开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。

  (3)巨大:

每年到达地球表面上的太阳辐射能约相当于130万亿t标煤,其总量属现今世界上可以开发的最大能源。

  (4)长久:

根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。

  缺点:

  

(1)分散性:

到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。

平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。

而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。

因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。

  

(2)不稳定性:

由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。

为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。

  (3)效率低和成本高:

目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。

但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。

在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。

  太阳能利用中的经济问题:

  第一,世界上越来越多的国家认识到一个能够持续发展的社会应该是一个既能满足社会需要,而又不危及后代人前途的社会。

因此,尽可能多地用洁净能源代替高含碳量的矿物能源,是能源建设应该遵循的原则。

随着能源形式的变化,常规能源的贮量日益下降,其价格必然上涨,而控制环境污染也必须增大投资。

  第二,我国是世界上最大的煤炭生产国和消费国,煤炭约占商品能源消费结构的76%,已成为我国大气污染的主要来源。

大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。

能源问题是世界性的,向新能源过渡的时期迟早要到来。

从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。

【我国太阳能资源】  在我国,西藏西部太阳能资源最丰富,最高达2333KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。

根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。

  一类地区

  为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。

这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。

尤以西藏西部最为丰富,最高达2333KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。

  二类地区

  为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。

这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。

  三类地区

  为我国太阳能资源中等类型地区,年太阳辐射总量为5000-5850MJ/m2,相当于日辐射量3.8~4.5KWh/㎡。

主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、苏北、皖北、台湾西南部等地。

  四类地区

  是我国太阳能资源较差地区,年太阳辐射总量4200~5000MJ/㎡,相当于日辐射量3.2~3.8KWh/㎡。

这些地区包括湖南、湖北、广西、江西、浙江、福建北部、广东北部、陕西南部、江苏北部、安徽南部以及黑龙江、台湾东北部等地。

  五类地区

  主要包括四川、贵州两省,是我国太阳能资源最少的地区,年太阳辐射总量3350~4200MJ/㎡,相当于日辐射量只有2.5~3.2KWh/㎡。

  太阳能辐射数据可以从县级气象台站取得,也可以从国家气象局取得。

从气象局取得的数据是水平面的辐射数据,包括:

水平面总辐射,水平面直接辐射和水平面散射辐射。

  从全国来看,我国是太阳能资源相当丰富的国家,绝大多数地区年平均日辐射量在4kWh/㎡以上,西藏最高达7kWh/㎡。

【太阳能热利用】  就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。

  太阳能集热器

  太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。

另外在冬天需要热交换器和膨胀槽以及发电装置以备电厂不能供电之需。

太阳能集热器(solarcollector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。

按传热工质可分为液体集热器和空气集热器。

按采光方式可分为聚光型和聚光型集热器两种。

另外还有一种真空集热器:

一个好的太阳能集热器应该能用20~30年。

自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。

  太阳能热水系统

  早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。

太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。

此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。

依循环方式太阳能热水系统可分两种:

  1、自然循环式:

  此种型式的储存箱置于收集器上方。

水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现像,促使水在除水箱及收集器中自然流动。

由与密度差的关系,水流量于收集器的太阳能吸收量成正比。

此种型式因不需循环水,维护甚为简单,故已被广泛采用。

  2、强制循环式:

  热水系统用水使水在收集器与储水箱之间循环。

当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。

水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。

由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。

如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。

因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。

  暖房

  利用太阳能作房间冬天暖房之用,在许多寒冷地区已使用多年。

因寒带地区冬季气温甚低,室内必须有暖气设备,若欲节省大量化石能源的消耗,设法应用太阳辐射热。

大多数太阳能暖房使用热水系统,亦有使用热空气系统。

太阳能暖房系统是由太阳能收集器、热储存装置、辅助能源系统,及室内暖房风扇系统所组成,其过程乃太阳辐射热传导,经收集器内的工作流体将热能储存,在供热至房间。

至辅助热源则可装置在储热装置内、直接装设在房间内或装设于储存装置及房间之间等不同设计。

当然亦可不用储热双置而直接将热能用到暖房的直接式暖房设计,或者将太阳能直接用于热电或光电方式发电,在加热房间,或透过冷暖房的热装置方式供作暖房使用。

最常用的暖房系统为太阳能热水装置,其将热水通至储热装置之中(固体、液体或相变化的储热系统),然后利用风扇将室内或室外空气驱动至此储热装置中吸热,在把此热空气传送至室内;或利用另一种液体流至储热装置中吸热,当热流体流至室内,在利用风扇吹送被加热空气至室内,而达到暖房效果。

  太阳能发电

  即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。

【空间太阳能电源】  第一个空间太阳电池载于1958年发射的VangtuardI,体装式结构,单晶Si衬底,效率约10%(28℃)。

到了1970年代,人们改善了电池结构,采用BSF、光刻技术及更好减反射膜等技术,使电池的效率增加到14%。

在70年代和80年代,地面太阳电池大约每5.5年全球产量翻番;而空间太阳电池在空间环境下的性能,如抗辐射性能等得到了较大改善。

由于80年代太阳电池的理论得到迅速发展,极大地促进了地面和空间太阳电池性能的改善。

到了90年代,薄膜电池和Ⅲ-Ⅴ电池的研究发展很快,而且聚光阵结构也变得更经济,空间太阳电池市场竞争十分激烈。

在继续研究更高性能的太阳电池,主要有两种途径:

研究聚光电池和多带隙电池。

  ×空间太阳电池主要性能

  电池效率

  由于太阳电池在不同光强或光谱条件下效率一般不同,对于空间太阳电池一般采用AM0光谱(1.367KW/㎡),对于地面应用一般采用AM1.5光谱(即地面中午晴空太阳光,1.000KWm-2)作为测试电池效率的标准光源。

太阳电池在AM0光谱效率一般低于AM1.5光谱效率2~4个百分点,例如一个AM0效率为16%的Si太阳电池AM1.5效率约为19%)。

  ◎25℃,AM0条件下太阳电池效率

  电池类型面积(cm2)效率(%)电池结构

  一般Si太阳电池64cm214.6单结太阳电池

  先进Si太阳电池4cm220.8单结太阳电池

  GaAs太阳电池4cm221.8单结太阳电池

  InP太阳电池4cm219.9单结太阳电池

  GaInP/GaAs4cm226.9单片叠层双结太阳电池

  GaInP/GaAs/Ge4cm225.5单片叠层双结太阳电池

  GaInP/GaAs/Ge4cm227.0单

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1